Presentations SMC Fall Meeting

Schedule (morning)

STAND MANAGEMENT COOPERATIVE FALL MEETING Wisteria Hall, Washington Arboretum, Seattle, WA September 22, 2016

	AGENDA
	BUSINESS MEETING
8:30	Registration, coffee & rolls
9:00	Welcome & Introductions Candace Cahill, outgoing Policy Committee Chair Gareth Waugh, incoming Policy Committee Chair
9:10	Opening Remarks from UW College of the Environment Dean Lisa Graumlich
9:40	Election of new Policy Committee Vice-Chair Gareth Waugh, PC Chair, PBTF
9:50	Announcements & Accomplishments Eric Turnblom ✓ 2016 at a Glance ✓ New Measurement Crew Personnel ✓ NSF CAFS update—funded projects
10:10	Director's Introductory Preface: SMC Budget and ResearchEric Turnblom✓ Policy Advisory Committee Meeting Summary✓✓ Budget Projection and Dues Vote✓
10:30	BREAK

Schedule (morning)

TEC	HNICAL SESSION
SMC	Ongoing Research

10:50	Overview of Modeling Project	Dave Marshall
10:55	Overview of Wood Quality Project	Eini Lowell
11:00	Overview of Silviculture Project	Eric Turnblom
11:05	Overview of Nutrition Project / Status of Type V's	Kim Littke
11:10	Late-Rotation Fertilization update	Kim Littke
11:30	Yield Performance of SMC Type I, II, and III Installations –(SMC) ²	Analysis Jason Cross
12:00	LUNCH	
1:00	TECHNICAL SESSION (cont.)	

Schedule (afternoon)

	TECHNICAL SESSION (cont.)	
1:00	PCT Analysis Project Status	Eric Turnblom
1:20	 Appraisal of Rotation-age Tree & Stand Characteristics ✓ Tree and log quality ✓ Non-Destructive Testing relationships ✓ Soil Properties ✓ Biomass models ✓ IRC timeline update 	Eric Turnblom Eric Turnblom Kim Littke Maguire / Mainwaring Jason Cross
2:20	Modeling Competition Effects on Tree Growth and Stand Developm Assembly and Exploratory Analysis of a Spatially Explicit Dataset	nent: Jeff Comnick
2:40	BREAK	
3:00	NRSIG – DNR Project	Luke Rogers
3:20	Present and Future of VMRC Research	Carlos Gonzales
3:40	 2017 Research Plan of attack 1. SMC Ownership Survey Update? 2. Early winter TAC meeting 3. Installation Review Committee 4. Spring meeting date/location 5. Meeting Wrap-up 	
4:00	Adjourn	

4

SMC Accomplishments 2016

- Database
 - Developed set of standard queries to extract data by project (e.g. Type I, Type V); delivered in workshop at Spring Meeting
 - Final stage of linking tables & validating crossreferences; expect to have tables linked and validated for GY 2016 update

- Field Measurements Completed (2015 2016)
 - Type I Installations
 - Seven (7) Installations received full measurement
 - Nine (9) received RD checks (marked 3 for thinning)
 - Type II installations
 - Two (2) Installations received full measurement
 - Type III Installations
 - Nine (9) installations received full measurement
 - Three (3) plots thinned
 - Type V Installations
 - Twenty six (26) received full measurement

Tree List Generation Database has five configurations:

- Fourth major revision (5th version)
 - 5) tgdb4r14: Includes plots from ORGANON modeling database + those Type I/II's established by 2000 (tgdb1r00), AND measurements through 2014 on all Types I/II/III, PLUS (New in 2016) an activated "PCT_STEMS_REMOVED" database schema switch to admit inputting a Pre-Commercial Thinning parameter; rebuilt

- Joint TAC meeting January 2016
- Finalized study plan for "Stand and Tree Reponses to Laterotation Fertilization"
- Developed two- and four-year response models using linear discriminant analysis for all Type V Paired-tree installations
- Installation Review Committee (IRC) meeting July 2016
- Three Policy Committee Meetings (March, August, September)
- Finalized yield model framework for (SMC)² Analysis / PYC, both all trees and crop trees- final stage of bootstrapping
- Hired the new SMC Field Marshal Mason Patterson

- Publications
 - Hoibo, O., E. Turnblom. 2016. Modelling vertical profiles of knot characteristics in young coastal U.S. Douglas-fir. Forest Products Journal
 - James, J., K. Littke, T. Bonassi, and R. Harrison. 2016. Exchangeable cations in deep forest soils: Separating climate and chemical controls on spatial and vertical distribution and cycling. **Geoderma** 279: 109-121.
 - Littke, K.M., R.B. Harrison, and D. Zabowski. 2016. Determining the Effects of Biogeoclimatic Properties on Different Site Index Systems of Douglas-fir in the Coastal Pacific Northwest. For. Sci.
 - Todoroki, C.L. and Lowell, E.C. 201x. Validation of models predicting modulus of elasticity in Douglas-fir trees, boles, and logs. New Zealand Journal of Forestry Science

- CAFS Annual Meeting April 26 28, 2016, Pensacola, FL
 - Final: Understanding Site-Specific Factors Affecting the Nutrient Demands and Response to Fertilizer by Douglasfir: <u>Harrison et al</u>
 - Continuation: Appraising Rotation-age Tree and Stand Characteristics in a 1970's Decadal Cohort of Douglas-fir Plantations in the PNW: <u>Turnblom et al.</u>
 - New Project: Stand and Tree Responses to Late-Rotation Fertilization: <u>Turnblom, Cross, Littke, Harrison</u>
 - **Student Poster:** Effects of nitrogen fertilization and thinning treatments on subsurface soil carbon and nitrogen: <u>Gross et al</u>.

10

- Other Meeting Presentations
 - International Convention Forest Products Society, June 27-29, 2016, Portland, OR, USA. Impact of Site and Silviculture Practices on nondestructive assessment of wood properties in Douglas-fir: Lowell, Filipescu, Turnblom, Koppenaal
 - Society for Ecological Restoration 2016 Regional Conference, Symposium: Management impacts on soil organic carbon, hydrology, and biotic communities, April 4-8, 2016. Portland, Oregon. Forest management impacts on soil carbon: Case studies from wet coastal to dry interior PNW forests (Invited Presentation): Gross, et al.
 - Society for Ecological Restoration 2016 Regional Conference, April 4-8, 2016. Portland, Oregon. An assessment of native plant species vigor and survival at an urban restoration site in relation to climate, topography, geology, and soil properties: <u>Gross.</u>
 - University of Washington School of Environmental and Forest Sciences 13th Annual Graduate Student Symposium, March 4, 2016. Seattle, Washington. Soil nutrition: Effects of nitrogen fertilization and thinning treatments on subsurface carbon and nitrogen: Gross <u>et al</u>.

- External Funding
 - \$64,200: "Sustainable Biofuels" from USDA
 - \$60,000: "CAFS" from NSF I/UCRC program
 - \$38,800: "Douglas-fir biomass" from McIntire-Stennis
 - \$33,250: "Understanding and Modeling Competition Effects" from NSF I/UCRC FRP
 - ~ \$30,000/y to SMC salary "buyback" for Rob Harrison
 - \$22,000: "B. Bruce Bare Endowed Chair in Forest Resources" SEFS
 - \$20,000: "Organic Retention" from NCASI

Student Updates

- Degrees Completed:
 - John Kirby (MS 2016), Matt Norton (MS 2015)
- Active students
 - Kevin Ceder (PhD), Jason James (PhD), Stephani Michelsen-Correa (PhD) and Marcella Menegale (PhD); Christiana Dietzen (PhD), Kiwoong Lee (PhD), Cole Gross (MS), Amelia Root (MS)
- Incoming students
 - Fletcher Harvey (MS), Pranjal Dwivedi (MS)

Measurements scheduled 2016-17

Type I

Inst.	Name	dol	Company	Comments
703	Longbell Road	Remark plot 10		Maybe
708	Copper Creek	Full Measurement	Port Blakely	
709	Mill Creek	Full Measurement	Weyerhaeuser	
710	Trail Creek	Full Measurement	Roseburg Lumber	
711	Kitten Knob	Full Measurement	Wash DNR	RD check plot 4
712	Prather Creek	Full Measurement	Weyerhaeuser	
713	Sauk Mt.	Full Measurement	Grandy Lake LLC	RD check plots 4 and 10
714	Mahatta River	Full Measurement	BC	
715	Davie River	Full Measurement	BC	RD check plot 6, mark and thin
716	Quilla Creek	Full Measurement	BC	RD check plot 2, 3, mark and thin
726	Toledo	RD check	Weyerhaeuser	RD check plots 4,8,9
729	Gnat creek	RD check	Oregon Dept. Forest	RD check plots 4 and 6
736	Twin Peaks	Full Measurement	Campbell Group	RD check plot 12
737	Allegany	Full Measurement	Oregon Dept. Forest	RD check plot 2

Type III

Inst.	Name	Job	Company	Comments
910	King Creek	Full Measurement	Hancock	
916	Bobo's bench	Thin	Weyerhaeuser	Mark plot 13
918	Grimm Rd.	Full Measurement	Port Blakely	
924	Mosquito Rocker	Full Measurement	Wash. DNR	
937	Ames Creek	Full Measurement	Cascade Timber	Thin plot 11
938	Grimm Rd.	Full Measurement	Port Blakely	
942	Cat Ballew	Full Measurement	Wash. DNR	Thin plot 11,12,18,24

14

Measurements scheduled 2016-17

Type IV

Inst.	Name	Job	Company	Comments
601	Donkey Creek	Full Measurement	Rayonier	22 plots
602	Donaldson Creek	Full Measurement	Green Crow	22 plots
603	Crane Creek	Full Measurement	Quinault Indian	22 plots
604	TBD			New WH trials
605	TBD			New WH trials
606	TBD			New WH trials
607	TBD			New WH trials

Type V

Inst.	Name	Job	Company	Comments
883 *	Alderbrook C.C.	Full Measurement	Green Diamond	
884 *	Carson Lake	Full Measurement	Green Diamond	
885 *	Stoner	Full Measurement	Green Diamond	
886 *	Beeville rd. South	Full Measurement	Green Diamond	
887	St. Helen's	Full Measurement	Weyerhaeuser	Dropped
888 *	Fall River Fertilization	Full Measurement	Weyerhaeuser	
889	Deadhorse	Full Measurement	Weyerhaeuser	
890	Ditch creek road	Full Measurement	Hancock	
891	Red Hill	Full Measurement	Roseburg	
892	Castle Rock	Full Measurement	Weyerhaeuser	
893	Frozen Creek	Full Measurement	Roseburg	

* 2016-2017 measurements completed

Measurements scheduled 2016-17

Type VI

Inst.	Name	Job	Company	Comments
751	TBD	Install, Meas., Treat	TBD	
752	TBD	Install, Meas., Treat	TBD	
753	TBD	Install, Meas., Treat	TBD	
754	TBD	Install, Meas., Treat	TBD	
755	TBD	Install, Meas., Treat	TBD	
756	TBD	Install, Meas., Treat	TBD	
757	TBD	Install, Meas., Treat	TBD	
758	TBD	Install, Meas., Treat	TBD	
759	TBD	Install, Meas., Treat	TBD	
760	TBD	Install, Meas., Treat	TBD	
761	TBD	Install, Meas., Treat	TBD	
762	TBD	Install, Meas., Treat	TBD	
763	TBD	Install, Meas., Treat	TBD	
764	TBD	Install, Meas., Treat	TBD	
765	TBD	Install, Meas., Treat	TBD	

Budget Preamble

- We carried over \$243,000 into 2016
- We have lost SPI, Plum Creek; BLM has considerably reduced acreage under their new RMP
- Of the 3 approved research projects currently underway
 - Funds for the 2nd Generation western hemlock trials are banked, totaling \$51,665 (y1: \$3750, y2: \$17,515, y3: \$17,400, y4: \$13,000)
 - Late rotation fertilization project approved: budget evolving (\$26,685 for next two years is committed)
 - The Type I Sunset project is in an analyze-report-modify stage; no funds committed to an additional installation this year- as of now none are known to be staged for harvest this year
- Will embark on hiring contractors to take measurements at select installations as Bob has agreed to train Mason and assist in training contract crews in coming year

2016 Income and Expenses

Income	Amount	
Formula Funding	\$	623,596
Contracts	\$	3,486
Subtotal	\$	627,082
In-kind credits	\$	(9,840)
Net Cash Contributions	\$	617,242
2015 Ending Balance Forward	\$	243,031
Total Funds Available	\$	860,273
Expenses	Amount	
Salaries	\$	273,863
Benefits	\$	75,237
Travel	\$	61,112
Equipment & Supplies & Contracts	\$	46,729
Committed Project Funding	\$	186,000
Subtotal	\$	642,941
Indirect (8% rate while CAFS funded)	\$	35,172
Total Direct & Indirect expenses	\$	678,113
Research Contracts	\$	30,000
Total Expenditures	\$	708,113
2016 Ending Balance	\$	152,159
Total Funds Available	\$	860,273

18

2017 Dues Projected

Cooperator	Amount	
American Forest Mgt.	\$	18,423
Bureau of Land Management	\$	33,067
Campbell Global	\$	24,745
Cascade Timber Consulting	\$	19,152
Green Crow	\$	8,665
Green Diamond Resource	\$	25,234
Hampton Affiliates	\$	17,818
Hancock Forest Management	\$	35,572
Lewis & Clark Tree Farms	\$	19,301
Lone Rock Timber	\$	18,580
ORM Inc	\$	20,891
Oregon Dept. Forestry	\$	41,099
Pacific Denkman	\$	7,340
Port Blakely Tree Farms	\$	19,147
Quinault DNR	\$	9,331
Rayonier Forest Resources	\$	27,628
Roseburg Res.	\$	25,511
Stimson Lumber	\$	20,525
TimberWest-Coast Timberlands	\$	40,974
Washington DNR	\$	54,077
Weyerhaeuser NR	\$	79,514
TOTAL	\$	566,595

If acres > 100,000, dues = \$13,501 If acres< 100,000, dues = \$6,751 + \$0.039242 ac Dues cap = \$80,000

SMC-Related Contributions

Organization	Funds Contri	buted 2017
BC Ministry of Forestry	\$	68,000
UW faculty salaries (state support tied to mentoring SMC-based student research)	\$	100,000
UW Teaching and Research Assistantships (\$33,630/student)	\$	157,052
Total	\$	325,052

20

2017 Budget Projection

Category	Amount	
2017 Formula Dues	\$	566,595
2016 Ending Balance Forward	\$	152,159
Total Available Revenue	\$	718,754
Salaries	\$	291,976
Benefits	\$	82,522
Travel	\$	61,112
Equipment & Supplies	\$	46,729
Committed Project Funding*	\$	133,400
Subtotal expenses	\$	642,339
Indirect (8% rate while CAFS funded)	\$	32,996
Total Direct & Indirect expenses	\$	675,335
Field Crew Contracts	\$	60,000
Total Expenditures	\$	735,335
2017 Ending Balance	\$	10,019

*These funds will be held for project commitments.

21

Vote on dues

- Entertain a motion that we keep the dues the same and monitor our progress on the Type I sunset project, 2nd generation hemlock project, and hiring contract measurement crews through the fall / winter
- Task force to be set up subsequently to examine dues structure and level

SMC Nutrition Report

Fall, 2016 meeting, Center for Urban Horticulture University of Washington, Seattle

SMC Nutrition Report, Spring 2016

- 1) Student/funding updates
- 2) SMC Type V Kim Littke
- 3) SMC late fertilization study Kim

Funding, new initiatives

- NCASI through 2017 \$20K/year, \$678K total
- Approx \$300K/year equiv. TA/Gessel fellowships
- Partial salary buyback by UW Extension for Rob 3 months per year, about \$30K/year to spend on SMC work
- CAFS grant for productivity and response modeling and study of role of deep soils in forest productivity \$32,500 total
- Bioenergy grant from USDA, \$321K total (2011-2016) finishing

People/Graduate Students

- Graduate Students
 - Christiana Dietzgen, PhD start 2014
 - Jason James, PhD start 2015
 - Cole Gross, MS start 2015
 - Amelia Root, MS start 2015
 - Pranjal Dwivedi, MS start Fall 2016
 - Matt Norton (MS) fishished Spring 2015
 - Stephani Michelsen-Correa (PhD) finishing 2016
 - Marcella Menegale (PhD) finishing 2016
 - Kim Littke, Postdoc
 - all salaries currently funded with external funding

Silver Creek Mainline (SMC Installation 722) Type 1 Sunset Update

Treatments 1-6 and 13-15 (9 plots total)

reatment	Initial Stocking	Regime	Installation 722 Plot No.	
	ISPA/4	No Thinning	2	
	ISPA/2	No Thinning	8	
	ISPA/2	Minimal Thinning: RD55-RD35 once (MT)	3	
	ISPA	No Thinning	5	Stand Managen
	ISPA	Minimal Thinning: RD55-RD35 once (MT)	4	Longview Fibre E1/2, Sec. 16, T8S, Lat./Long. 44-52-271
	ISPA	Repeated Thinning: RD55-35, 55-40 and 60-40 (RT)	1	Scale 1" = 400'
				Ref. Tree #2
	ISPA/4	Fertilization with 200 lbs/acre N as urea 5 times (F)	12	
	ISPA/2	Fertilization and Minimal Thinning (F +MT)	11	
	ISPA	Fertilization and Repeated Thinning (F +RT)	10	

Ref. Tree #1

Possible Comparisons

- Basic Treatments
 - Ho: ISPA = ISPA/2 = ISPA/4
 - Ho: ISPA = ISPA + MT
 - Ho: ISPA/2 = ISPA/2 + MT
- Supplementary Treatments
 - Ho: ISPA/4 vs. ISPA/4 + F
 - Ho: ISPA/2 vs. ISPA/2 + F + MT
 - Ho: ISPA vs. ISPA + F + RT
- Did not sample felled trees for pruned or selection thinning treatments

Sample sizes and data collection

Vegetation plots

four, circular vegetation sampling sub-plots (0.01 acres)

Soil Sampling

Three pits dug per plot to minimum of 1 m

Plot data

 stratified by most recent dbh measurements in database (2013) and divided into quintiles

30-tree sample (standing tree) = 6 trees / quintile

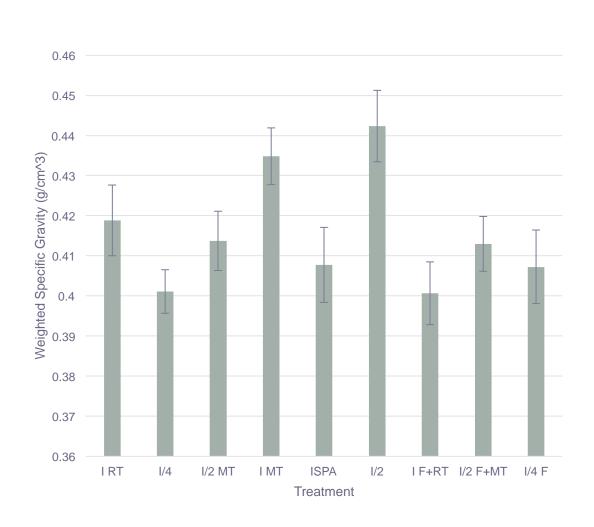
- crown width
- tree sonic
- resistograph
- dbh core (2 / tree)

11-tree sub-sample (felled tree) = 2,2,3,2,2 trees per quintile

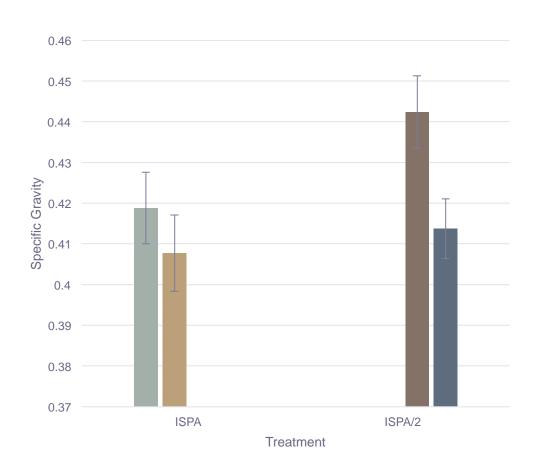
- Taper
- Hitman starting with longest merchantable length and working back to shortest length
- Disks cut at 5 locations
 - At 4-in top
 - Half-way between base of crown and 4-in top
 - base of crown (between 40 & 50 ft)
 - 17-ft
 - stump
- LLAD measurments

3-tree Biomass Sample

- Trees P10, P50 and P90 only:
 - crown and stem sampling for biomass estimation
 - remove branches and measured all knots by 16-ft log lengths
- Trees representing the 10th and 90th percentile only:
 - identify the foliage chemistry
 - measure and sample dead branches

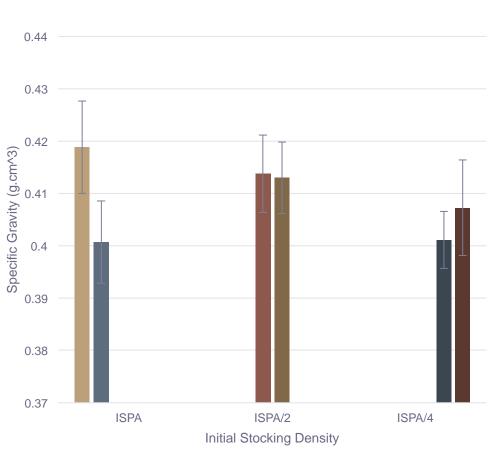

Status

- ✓ Summer/Fall 2016
 - X-ray densitometry on cores and strips
- ✓ Summer 2016
 - Completed data entry / cleaning of volumetric & weight determinations on disks
 - Continued examination of treatment differences using available variables
- ✓ Fall 2016
 - Continuing data extraction / cleaning of resistance value (resi-drill) data


Butt-Log Specific Gravity by Treatment

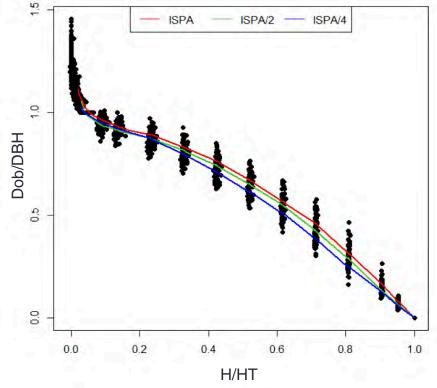
Treatment Key: ISPA= Init. Dens. no Thin I MT= ISPA Thin once I RT = ISPA Rep. Thin I/2 = ISPA/2 PCT, no CT I/2 MT= I/2, Thin once I/4 = ISPA/4 PCT, no CT I/4 F = I/4 + Fert. F = Fert. in all cases

Butt Log SG grouped by Thinning Intensity and Initial Stocking


Treatment Key: ISPA= Init. Dens. no Thin I MT= ISPA Thin once I RT = ISPA Rep. Thin I/2 = ISPA/2 PCT, no CT I/2 MT= I/2, Thin once I/4 = ISPA/4 PCT, no CT I/4 F = I/4 + Fert. F = Fert. in all cases

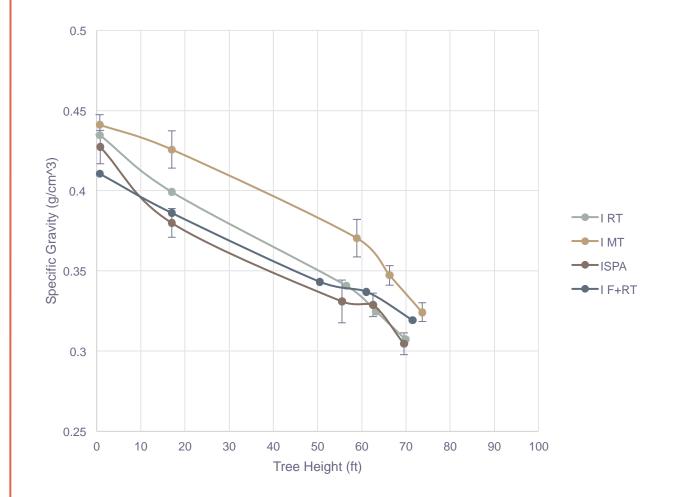
■I RT ■ISPA ■I/2 ■I/2 MT

Butt Log SG by Initial Stocking Density, w & w/o fertilization

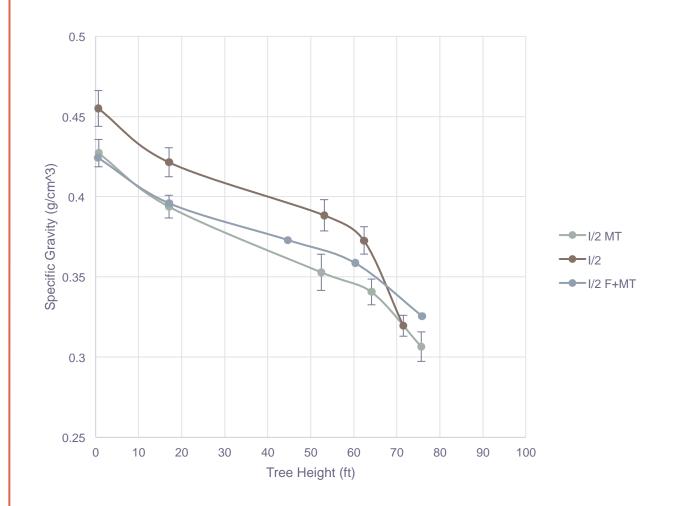

Treatment Key: ISPA= Init. Dens. no Thin I MT= ISPA Thin once I RT = ISPA Rep. Thin I/2 = ISPA/2 PCT, no CT I/2 MT= I/2, Thin once I/4 = ISPA/4 PCT, no CT I/4 F = I/4 + Fert. F = Fert. in all cases

■I RT ■I F+RT ■I/2 MT ■I/2 F+MT ■I/4 ■I/4 F

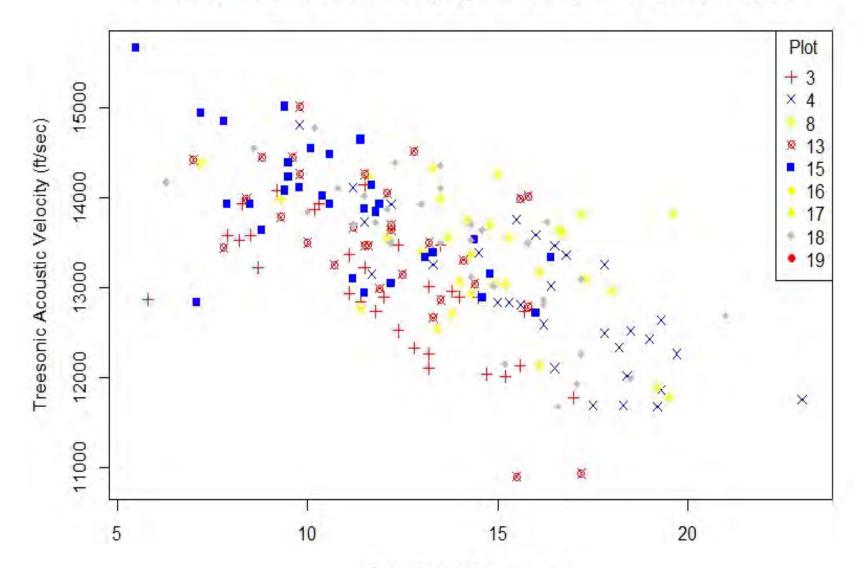
Taper Pattern Among Treatments


Whole disk SG Along Stem for ISPA/4, variously treated

Treatment Key: ISPA= Init. Dens. no Thin I MT= ISPA Thin once I RT = ISPA Rep. Thin I/2 = ISPA/2 PCT, no CT I/2 MT= I/2, Thin once I/4 = ISPA/4 PCT, no CT I/4 F = I/4 + Fert. F = Fert. in all cases


Whole Disk SG for ISPA, variously treated

Treatment Key: ISPA= Init. Dens. no Thin I MT= ISPA Thin once I RT = ISPA Rep. Thin I/2 = ISPA/2 PCT, no CT I/2 MT= I/2, Thin once I/4 = ISPA/4 PCT, no CT I/4 F = I/4 + Fert. F = Fert. in all cases


Whole Disk SG for ISPA/2, variously treated

Treatment Key: ISPA= Init. Dens. no Thin I MT= ISPA Thin once I RT = ISPA Rep. Thin I/2 = ISPA/2 PCT, no CT I/2 MT= I/2, Thin once I/4 = ISPA/4 PCT, no CT I/4 F = I/4 + Fert. F = Fert. in all cases

RD Thin No Thin Log Resonance AV (ft/sec) 0 00 Ó Ó 0 0 O.

TreeSonic AV (ft/sec)

Installation 722 acoustic velocity by diameter per tree grouped by plot

Breast Height Diameter (in.)

Results of bootstrap analysis (n=1000): F-test on variance between 6-trees-per-quintile data and resampled quintiles without replacement, by plot with ISPA and Treatment Regimes Code.

N	ote	5	
		υ.	

All plots at all resampling intensities matched the 6/6 mean acoustic velocity (not shown).

ISPA/2 and ISPA/4 plots could match mean and variance at a sampling intensity of 1 tree per quintile.

Plot 4 is ISPA with minimal thinning; requiring 5 trees per quintile to match variance. All other ISPA would match at sampling intensity of 1 tree.

Plot	ISPA	Trt	Boot 5/6	Boot 4/6	Boot 3/6	Boot 2/6	Boot 1/6
1	1	RT	1.000	1.000	0.998	0.998	0.991
2	4	NT	1.000	0.999	1.000	1.000	1.000
3	2	MT	0.999	0.990	0.986	0.986	0.975
4	1	MT	0.951	0.893	0.895	0.895	0.885
5	1	NT	1.000	0.999	0.998	0.998	0.997
8	2	NT	1.000	1.000	0.998	0.998	0.994
10	1	F+RT	0.995	0.991	0.981	0.981	0.984
11	2	F+MT	0.999	0.997	0.995	0.995	0.992
12	4	F	1.000	0.999	0.993	0.993	0.981

Next Steps

- Further analysis
 - Continue optimizing sample sizes
 - TSAV, LRAV
 - X-ray density at breast height
 - Develop plans for orderly sunset
 - Measurement plots
 - Buffers
- Summary Report in Working Paper
- Choose next installation

Nutrition TAC and Current Type V Updates

Kim Littke and Rob Harrison

The Effects of Biomass Removal and Competing Vegetation Control on Douglas-fir Foliar Nutrition in the Pacific Northwest, USA.

A.M. Root, R.B. Harrison, S.M. Holub

Research Objectives:

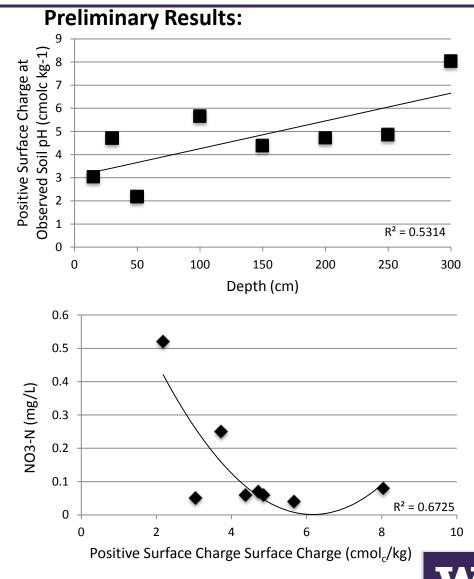
- I. Assess the nutrient status of trees within the treatments.
- II. Compare these measured data values against critical values to assist with interpretation of previously collected tree growth data.
- III. Use in conjunction with individual tree growth data and site nutrition to assess the effectiveness of plot treatments and to inform on future treatments.

Expectations:

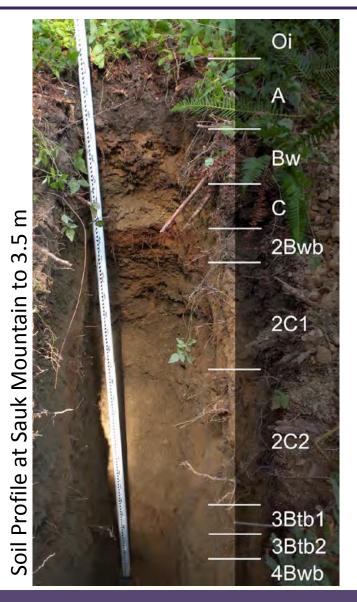
- 1. The vegetation control treatments will influence foliar nutrition uptake by reducing competition in the plot for soil nutrients.
- 2. Removal of biomass will lower foliar nutrition levels.
- 3. Compaction may increase foliar nutrition

Characteristic	Matlock (WA)	Molalla (OR)	Fall River (WA)	Springfield (OR)
Elevation (m)	35	549	334	670-700
Soil series, texture		Kinney, cobbly loam		Peavine, silty clay Ioam
Annual precipitation (cm)	249	174	181	167
Douglas-fir 50 year site index (m)	36	36	41-43	37

USDA


ncas

National Council for Air


Anion exchange capacity as mechanism for nitrate storage at Fall River

Christiana Dietzen

- Currently investigating how soils retain NO₃- and other negatively charged organic compounds in deep soils.
- Preliminary results suggest that anion exchange capacity increases with depth
- There is some correlation between amount of soil positive charge and exchangeable nitrate

Deep Soil Nutrients & Organic Matter – Jason James

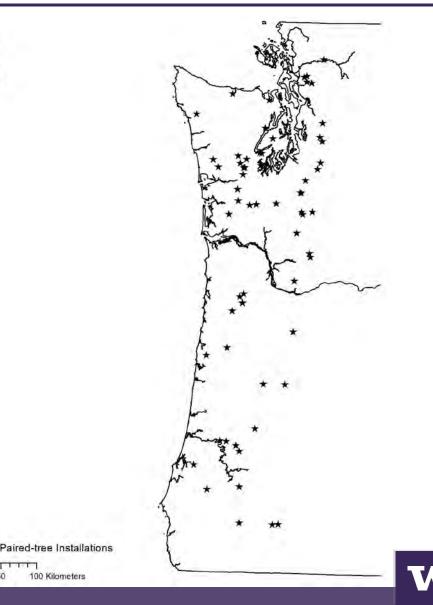
Analyzed samples to 3+ m depth at 17 additional sites

2 publications:

James, J., Dietzen, C., Furches, J., Harrison, R., 2015. Lessons in Buried Horizons and Pedogenesis from Deep Forest Soils. *Soil Horizons* 56:6.

o [Open Access]

James, J., Littke, K., Bonassi, T., Harrison, R., 2016. Exchangeable cations in deep forest soils: separating climate and chemical controls on spatial and vertical distribution and cycling. *Geoderma* 279: 109-121

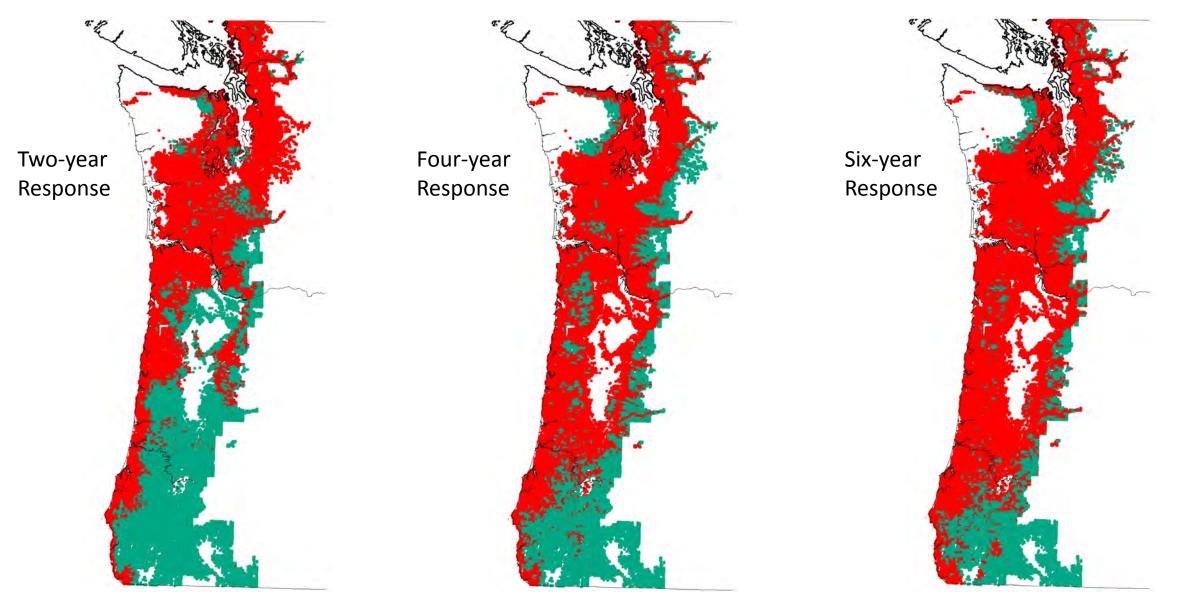

 $\,\circ\,$ Cycling of Exchangeable Cations at 22 SMC Type V Sites

Type V Status

Final 6 year measurements happening this fall

 \circ 10 installations

- No future measurements planned unless there is interest from the cooperators
- Analyzed 2, 4, and 6 year volume response on available stands
 - Significant response (p<0.10)
 - $_{\odot}$ Linear discriminant analysis
 - $_{\odot}$ Predicted response across the region


Measured Volume Response per Tree

Year	Two-year Response	Four-year Response	Six-year Response		
	(0-2)	(0-4)	(0-6)		
Responders	0.24 ft ³ /yr	0.21 ft ³ /yr	0.20 ft ³ /yr		
	(17%)	(17%)	(13%)		
Average	0.11 ft ³ /yr	0.06 ft ³ /yr	0.02 ft ³ /yr		
	(8%)	(5%)	(3%)		
Total Responding Stands	44% (n=71)	31% (n=65)	30% (n=53)		

Linear Discriminant Analysis Models

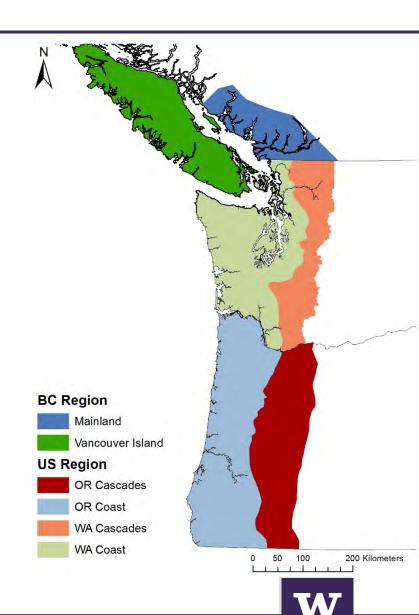
Response	Latitude (°)	Elevation (ft)	Slope (%)	Winter Temp (F)	Spring Temp (F)	September Temp (F)	Precip as Snow (in)	King's Site Index (ft at 50 yr)
Two-year	<46.4	>1,164				>60.1		<138
Four-year	<46.4	>1,309		<39.3	<48.1		>3.2	<139
Six-year		>1,277	>17	<39.3				<138
Average	<46.4	>1,250	>17	<39.3	<48.1	>60.1	>3.2	<138

Projecting Response Models Across the Region

What has the Type V Study accomplished?

- 3 spin-off studies
 - o Deep soil nutrients
 - \circ N15 study
 - Harvest residue removal
- 10 journal articles
- Next Steps
 - o Analyze all six-year data
 - o Publish 2-6 year response using LDA

Questions?

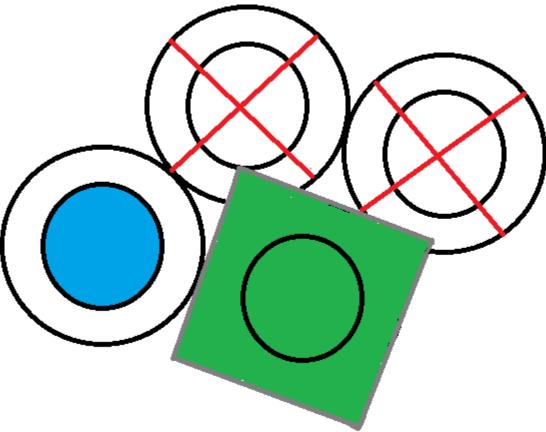


Type VI Updates

Kim Littke, Mason Patterson, Eric Turnblom, and Jason Cross

Stand Criteria

- Late-rotation managed Douglas-fir stands in Oregon, Washington, and BC
 - $\circ~$ Four regions in the US and two regions in BC
- Primarily Douglas-fir: 75% of the basal area in Douglas-fir
- Approximately 30 and 50 years total age from planting
 - \circ ~25-45+ years breast height age
 - $_{\odot}$ 8-10 years before final harvest
- Stands should not have been fertilized in the past 6 years
- No restriction on past thinning (PCT or CT)
- Uniform area of 15+ acres

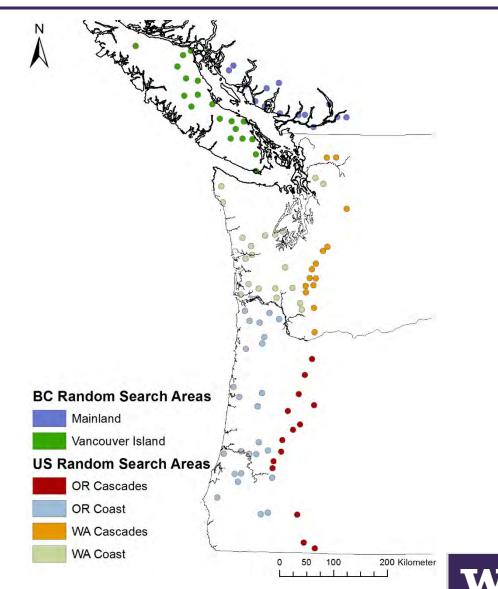


Plot Installation

- Stands to become Type VI installations will be chosen at random from all qualifying stands
 Within 3.38 miles of random Lat/Long coordinates
- Paired fixed-area, circular plots, chosen from four (or five) temporary plots
- Size of plot is dependent on density.

For densities ranging from 150-250 TPA - 0.45 ac (0.18 ha)

- $_{\odot}\,$ For 251-350 TPA 0.31 ac (0.126 ha)
- $\circ~$ For greater TPA 0.20 ac (0.081 ha) plots


Current Status

US

- Sent out 73 search areas to search for potential stands
- 13/20 cooperators submitted stands
- 59 areas with potential stands
- 14 intersect RFNRP, SMC or Type V installations

BC

- Sent out 33 search areas
- Still searching for potential stands
- 2 intersect Type V installations

Cooperator Areas by Region

Cooperators	Stands	WA Coast	WA Cascades	OR Coast	OR Cascades
American Forest Management	1		1		
Campbell	29	3		2	
Greenwood Resources	1			1	
Green Crow	1	1			
Hancock	85	2	2	3	
Lone Rock	28			7	
Olympic Resource Management	5				
Port Blakely	54	3	4		
Rayonier	11	1			
Roseburg	110			5	1
Stimson	15	3			
Weyerhaeuser	396	11	7	10	10

Proposal for Selecting Areas and Stands

- 1) Randomly choose a search area for each cooperator
- 2) Randomly rank that cooperator's stands within that area for inspection
- 3) Once every cooperator is represented, rank other areas randomly to fill out the 6-9 areas allocated by region
- 4) Randomly rank stands for inspection within each chosen search area

Example of selection technique showing the randomly chosen stands for inspection per region by area

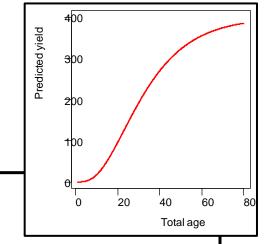
Region	American	Campbell	Green Crow	Green Diamond	GWR	Hancock	Lone Rock	ORM	Port Blakely	Rayonier	Roseburg	Stimson	Weyerhaeuser
WA Coast		1	1	2		1		1	1	1			2
WA Cascades	1					2			2				1
OR Coast					1	1	1				1	2	3
OR Cascades											1		5

Timeline

	Spring	2016
--	--------	------

- ➢ Fall 2016-Spring 2017
- ➢ Summer 2017
- ➤ Fall 2017
- Spring 2018
- ➤ Fall 2019
- ➤ Fall 2021
- ➤ Fall 2023
- ≻ Fall 2025

Weyerhaeuser installed two test installations Locate 30 installations Establish all installations/Pair plots Measure plots Fertilize plots 2-year measurement and interim report 4-year measurement and interim report 6-year measurement and interim report 8-year measurement and final report


$(SMC)^2$

Silviculture manipulation consequences in stand management cooperative installations

Maureen C. Kennedy Eric Turnblom Jason Cross SMC Fall Meeting September 22, 2016

Performance report: Analysis goals

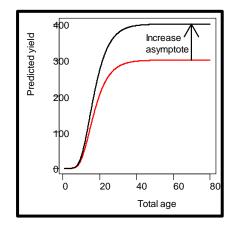
- Predict yield using Chapman-Richards
 - BA, QMD, [TPA], CVT, CV4, CV6, BF4, BF6
- Test differences in yield curves with site characteristics
 - Initial TPA, SI30, species (DF, WH, or Mixed), elevation, latitude, longitude
- Estimate models separately for Type III and for Type I/II combined

Divide into geographic zones

Zone 1: Vancouver Island and Strait of Juan de Fuca

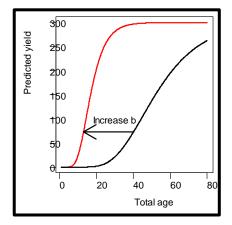
Zone 2: Mainland SW BC, Whatcom and Skagit Counties

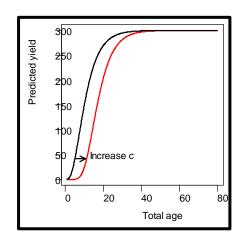
Zone 3: "Puget Trough" E Jefferson, Kitsap, Snohomish, King, Thurston, Pierce, Lewis and E Clallam Counties


Zone 4: "Inland"

Cowlitz, Skamania, Clark Counties, Clackamas, Linn, Marion, E Lane, E Douglas, Jackson counties

Zone 5: "Coastal"


W Clallam, W Jefferson, Grays Harbor, Pacific, Wahkiakum, Clatsop, Tillamook, Yamhill, Polk, Lincoln, Benton, Columbia, W Lane, W Douglas, Coos, Curry, Josephine


Variables chosen to test a priori

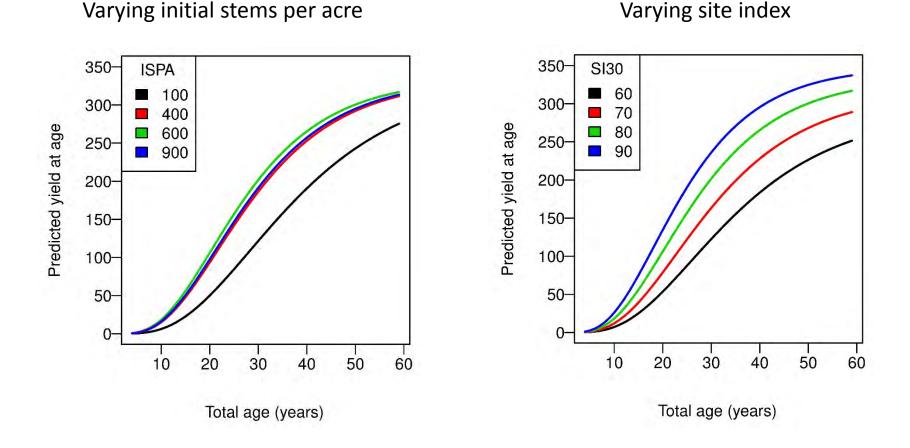
Asymptote (a) ~ (SI30, species, elevation, zone)

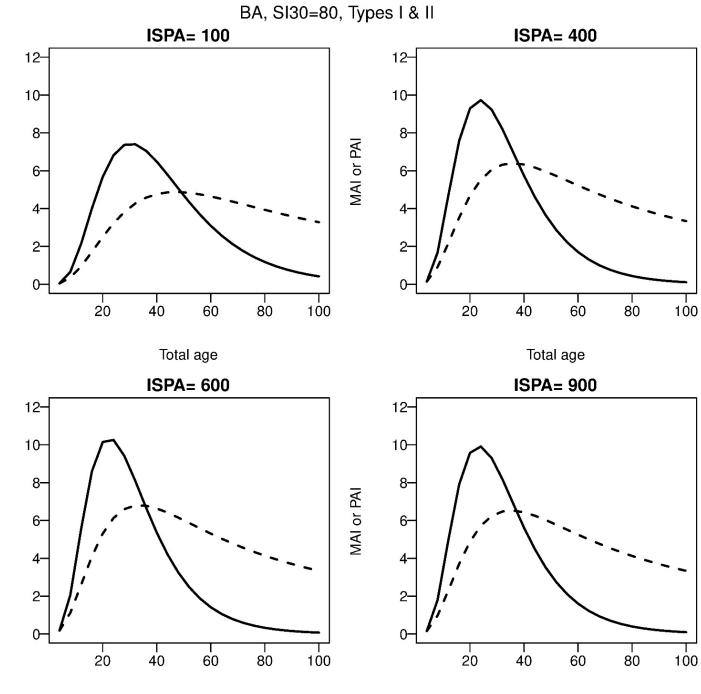
Rate parameter (b) ~ (SI30,species,elevation,zone,ISPA,ISPA²)

Shape parameter (c) ~ (species)

Bootstrap to eliminate non-significant predictors

Douglas-fir, Site Index (30) = 80 Elevation = 1000, zone = Puget Trough

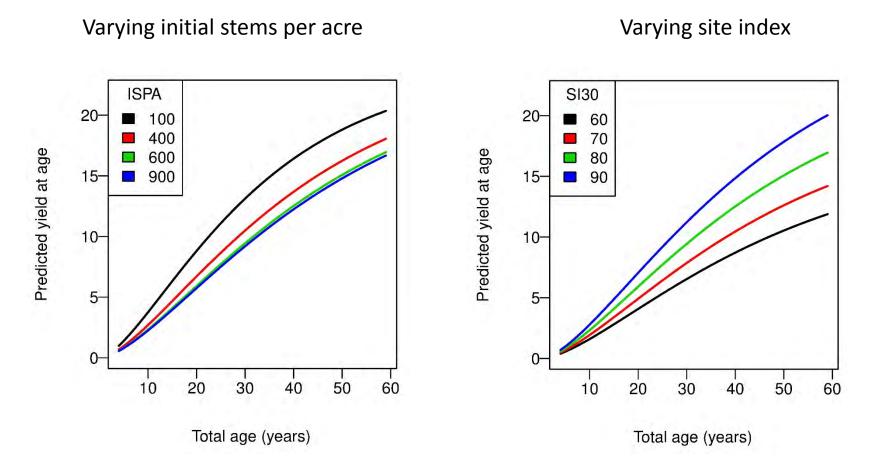

Example final model: cubic foot volume (top) (r²=0.93)

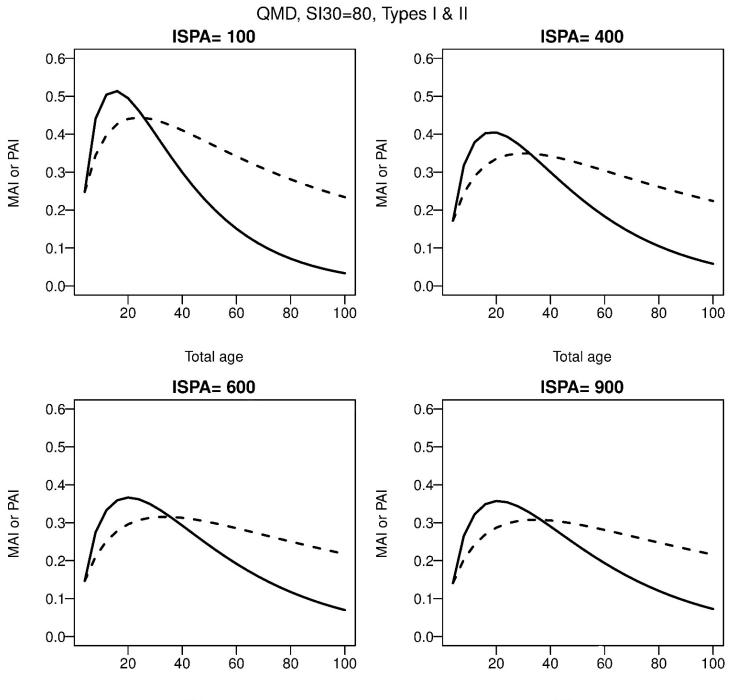

Varying initial stems per acre Varying site index 12000-**ISPA** SI30 10000-100 60 10000-Predicted yield at age 400 Predicted yield at age 70 8000-600 80 8000 900 90 6000-6000-4000-4000-2000-2000-0 0 20 30 40 50 10 60 30 40 50 20 10 60 Total age (years) Total age (years)

BA and QMD fitted simultaneously with TPA

- Solved issue in estimating asymptotic yield
 - Fit asymptotic yield to SI30, separately for BA and QMD, using McArdle & Meyer yield tables
- Reverse-weighted TPA with age (issues in ingrowth with Type I/II installations)
- Ensured that weights for each of the three variables standardized to equal weighting
- Fits of the full model completed, currently running bootstrap model reductions

BA predicted yields (unreduced) Type I/II installations (r²=0.89)

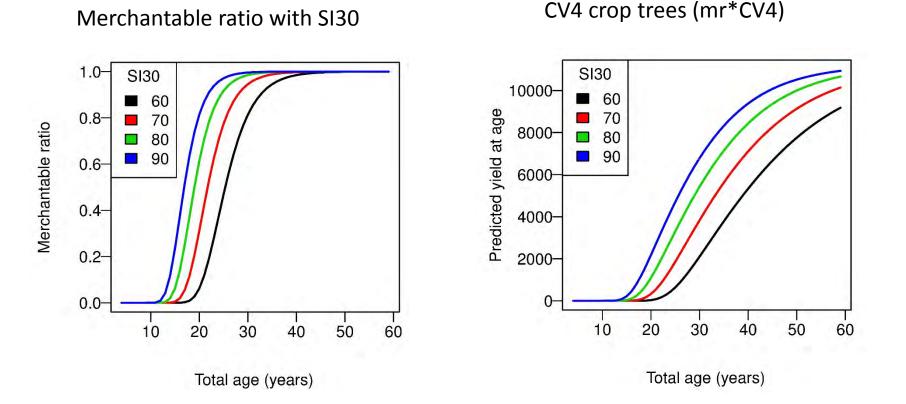

MAI or PAI


MAI or PAI

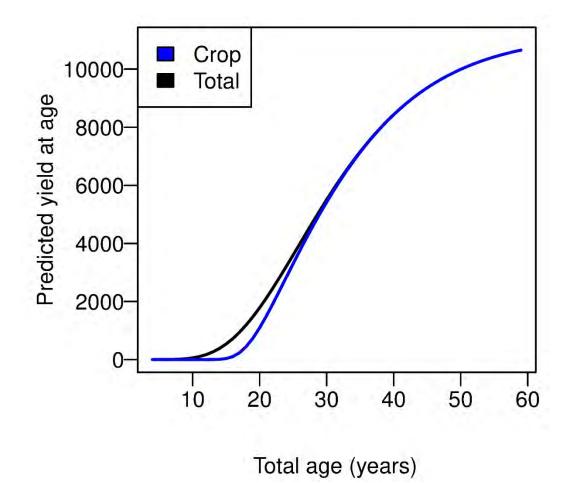
Total age

Total age

QMD predicted yields (unreduced) Type I/II installations (r²=0.88)


Total age

Total age


Fitting crop yield

- Crop yields for cubic foot volume and board foot yields
- Model merchantable ratio of crop trees relative to total yield variable
 - A ratio between 0 and 1.
 - e.g., CVTcrop/CVT
- Use same modeling framework as for total yield, but fix asymptote at 1
- Apply predicted merchantable ratios to predicted total yield
- First fits give R² for crop variables commensurate with those for total yield.

Example crop yield: Cubic foot volume (4 in top); (r²=0.93)

Compare total yield to crop yield: Cubic foot volume (4 in top)

Conclusions & Next Steps

- We recommend limiting predictions to within observed age ranges (<60 years Type I/II, < 30 years Type III's)
- BA and QMD models are now included
- Finalizing coding of Plantation Yield Calculator: how to let users select among options in an intuitive manner without being overloaded.
- Next challenge—add the effect of treatments:
 - PCT stands
 - Fertilization
 - RD thinnings

PCT Analysis

Eric C. Turnblom

Spring Policy Meeting

19 April 2016

PCT Analysis

- Rationale
- Objectives
- Experimental Plan
- Results
- Final Steps

Rationale

- SMC members seek to maximize timber volume & value, but also place some degree of priority on less conventional stand attributes such as:
 - Live Crown Length
 - Branch / Knot Size
 - Other habitat values
- The impacts of timing / intensity of PCT on these attributes are not well understood / publicized

Experimental Plan

- Objective 1: Describe Stand yield
 - QMD, BA, TPA, CVT, CV4 & BF4, CV6 & BF6
 - Late-rotation & At-rotation
- Objective 2: Provide stand / stock tables (stand structure) expected under different PCT regimes
 - Implementing Treelist Generation Database (TGDB)
 - Inputs are:
 - Thinned flag & thinning specs (percent of stems removed, pre-thin TPA and BA, years since thinning and number of thinnings
 - Stand origin (planted/natural), Stand type (spp mix), SI50, Total age, QMD, TPA, Thinning specs if thinned (including during

Experimental Plan

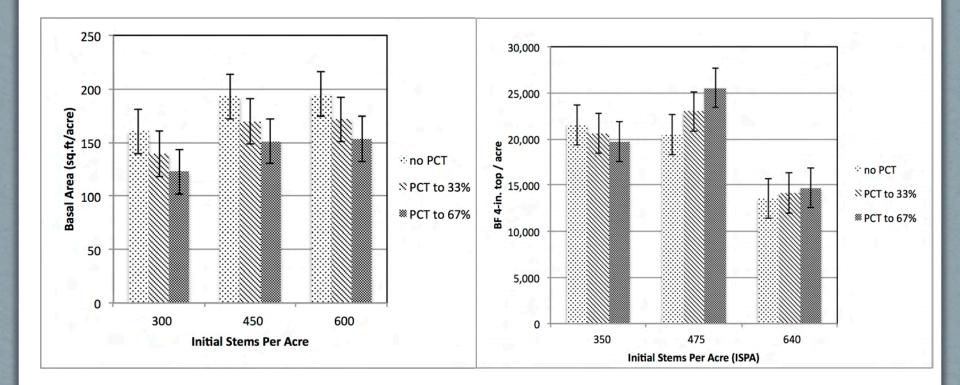
- Use existing SMC data -
 - Type I data
 - Two levels of spacing (ISPA/2, /4)
 - Two types of spacing (systematic, select best trees)
 - Applied at different ages
 - Twenty-nine (29) Type I installations were available for analysis, I2 contained auxiliary "Best Tree Selection" (BST) plots
 - ISPA ranged from 250 to 700; age at PCT from 5 to 17 yr; 30-yr SI ranged from 40 to 90 ft

Experimental Plan

- Use existing SMC data
 - Type III data
 - PCT is combination of two factors
 - Timing: early / late
 - Intensity: light / heavy

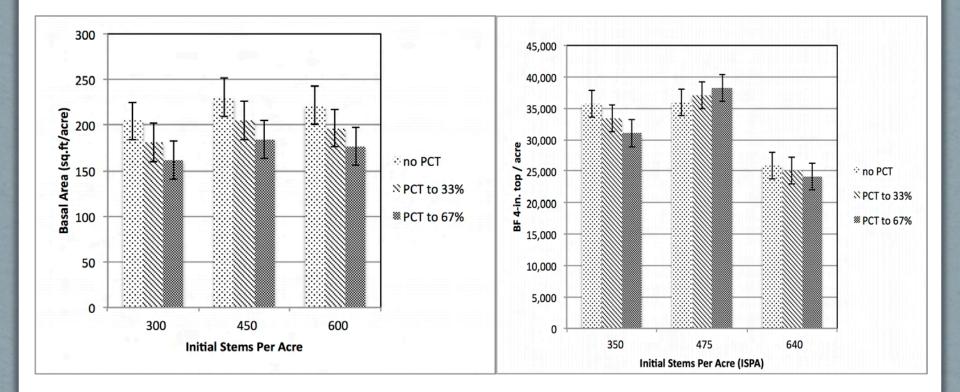
Expected Deliverables

- Models describing yields in stands with & w/o PCT across sites, densities, timings in SMC Working Paper
- Mechanism to deliver tree lists corresponding to defined reporting ages and useful combinations of input variables



Results

- Yield Responses in Type I installations
- A multiple linear regression approach was used to analyze "late rotation" yield responses to PCT
 - Total stand ages greater than 30 yr from seed
 - Independent variables used:-
 - ISPA, percent stems removed (PRM), SI30, Elev, Tot. Age, Age at PCT, PCT type, Latitude, Longitude – their interactions
 - This made 163 observations available for analysis

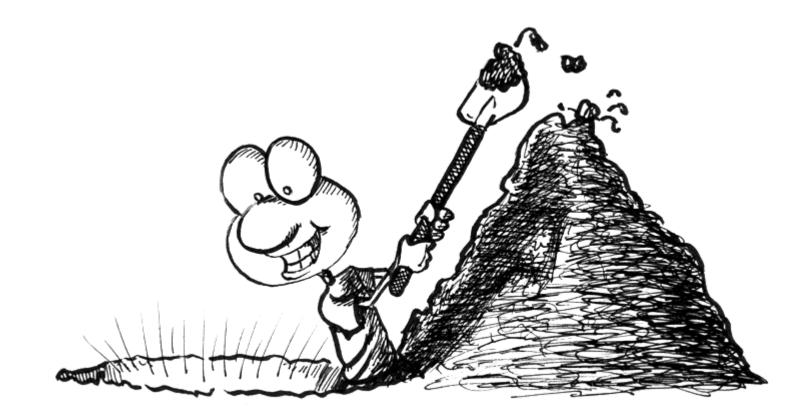


Age 35 Yields, SI30 = 70 by density by PCT intensity (age 10)

Age 35 Yields, SI30 = 70 by density by PCT intensity (age 10)

Member Benefits

- Better understanding of how stands with given characteristics could be most profitably managed for the mix of materials that might be produced
- Resulting whole stand models will provide independent corroboration of growth modeling work


Final Steps

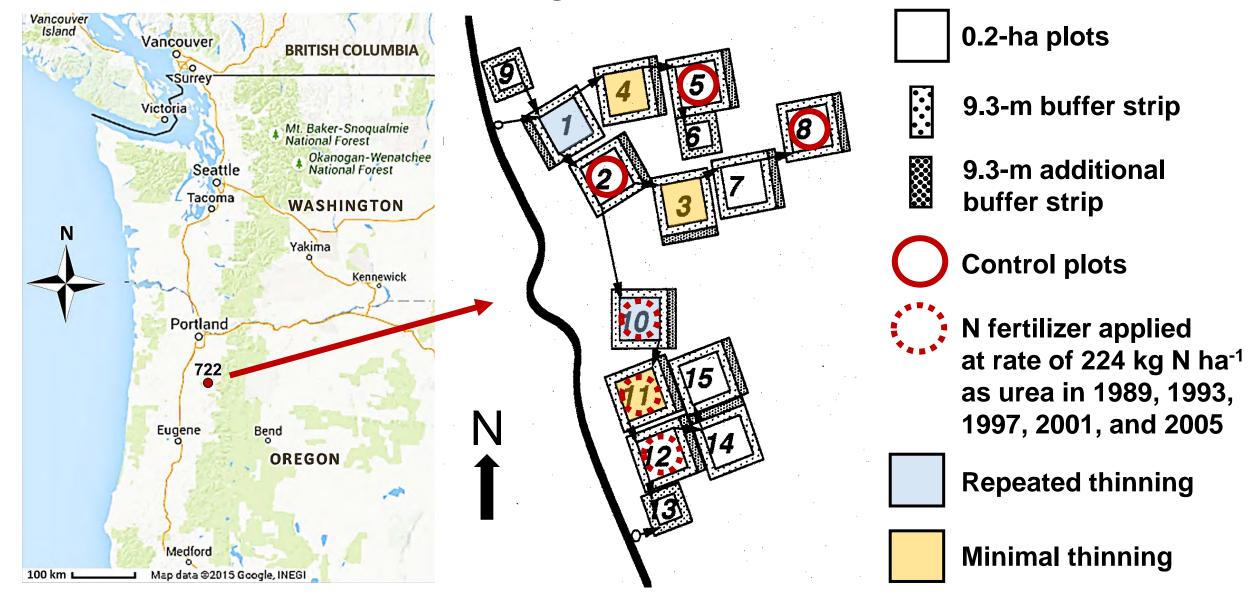
- Write up Type I 'late-rotation yield results in first Working Paper
- Write up Type I 'at-rotation' yield results in second Working Paper
- Repeat for Type III installations
- Link to PYC

Effects of Nitrogen Fertilization and Thinning Treatments on Subsurface Soil Carbon and Nitrogen

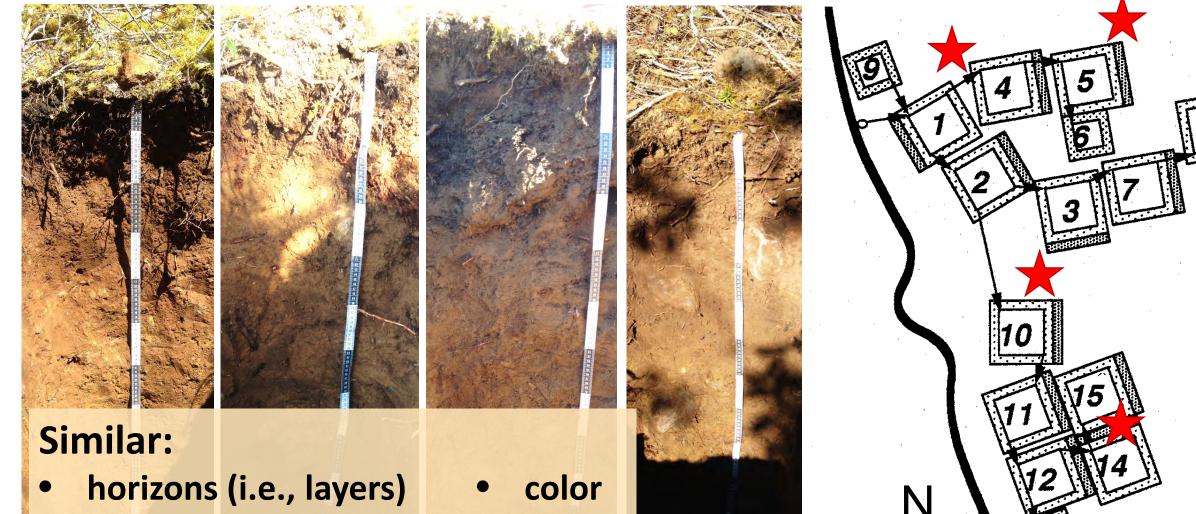
Cole D. Gross, Jason N. James, Robert B. Harrison

Purpose

Provide data for regional responses of soil C and N by depth to fertilization and thinning treatments



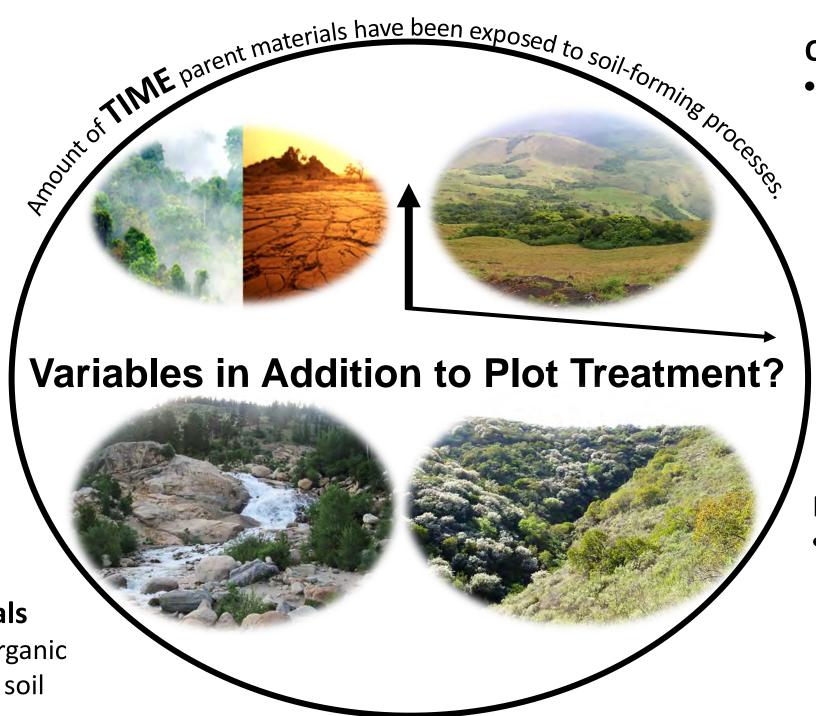
Study Site & Methods


- Douglas-fir plantation
- Established in 1989
- Three random pits/plot
- Soil sampled by depth to 1.5 m
- Methods for soil bulk density:
 Clod
 Corer
 - O Volumetric

Stand Management Coop Inst. 722 "Silver Creek Mainline"

Lat./Long. N 44.88, W 122.57

Assumption of Soil Uniformity at the Site Prior to Treatment



roots

- texture and structure
 - Somewhat variable rock %

Climate

- Precipitation
- Temperature

Organisms

- i.e., biota
 - o Vegetation
 - o Microbes
 - o Soil animals
 - o Humans

- Relief
- i.e., topography
 Slope
 Aspect
 Landscape
 position

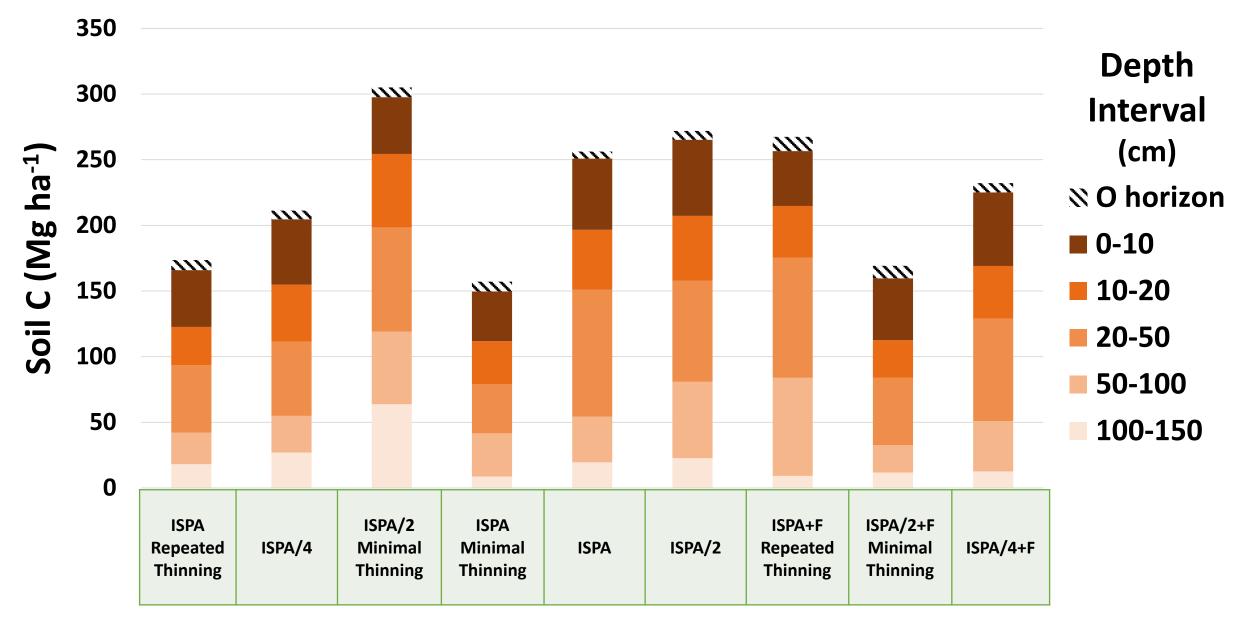
Parent Materials

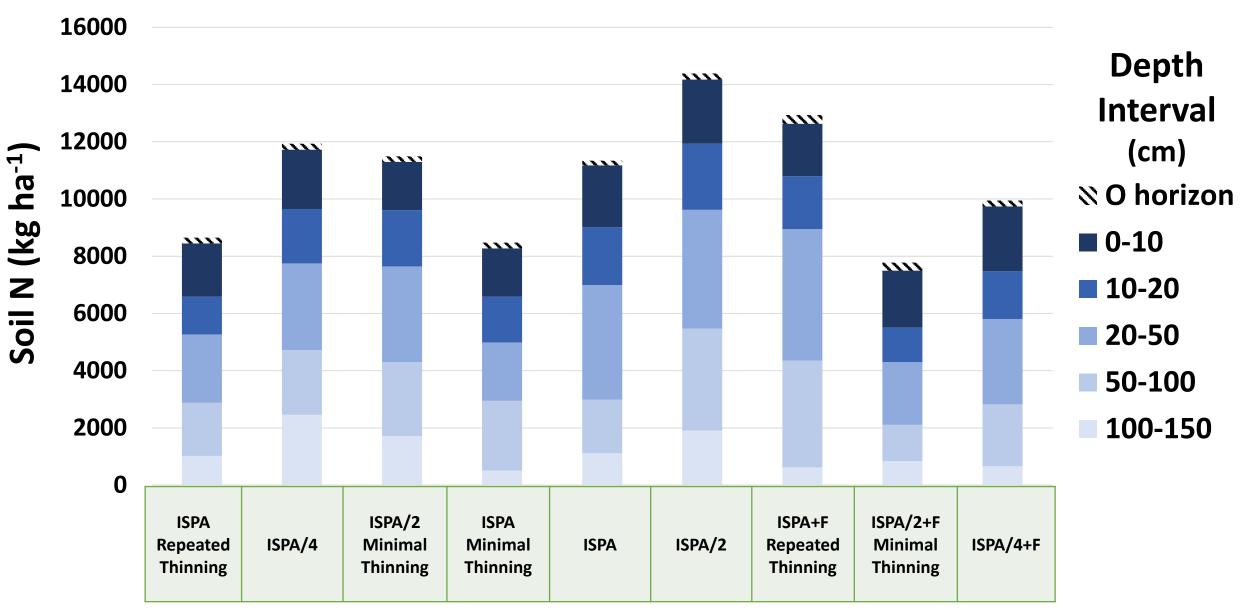
 Geologic or organic precursors to soil

Variables in Addition to Plot Treatment?

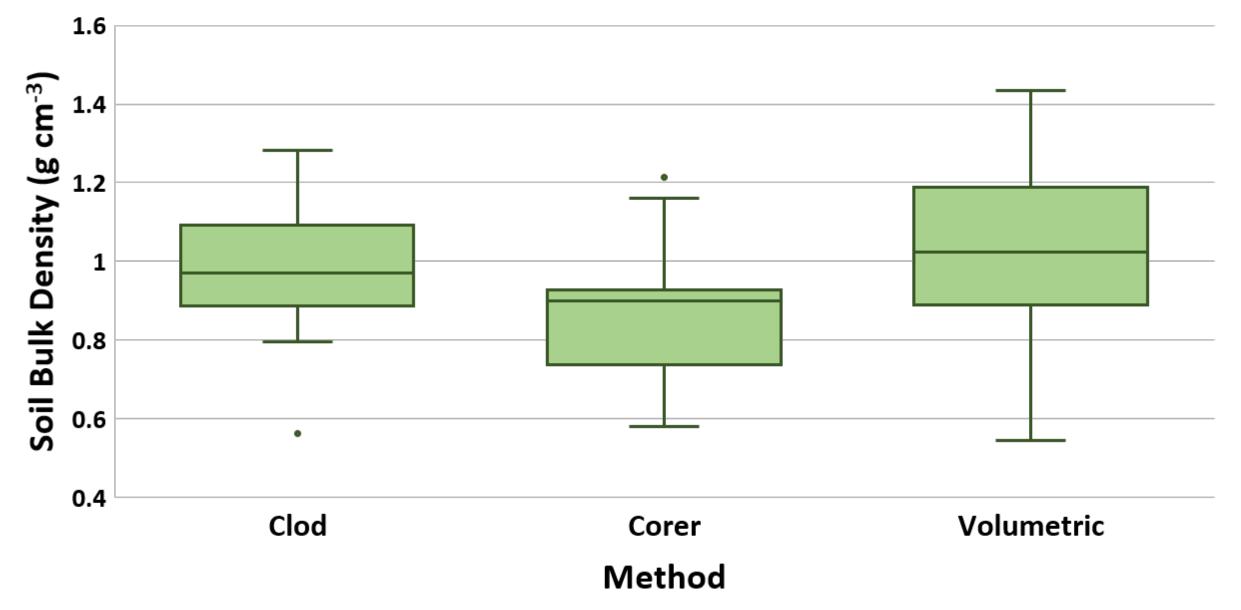
PLOT	SLOPE (%)	ASPECT (°)
1	12	222
2	0	0
3	28	242
4	17	274
5	13	353
8	0	0
10	15	255
11	15	236
12	15	203

0.2-ha plots •••• 9.3-m buffer strip 9.3-m additional **buffer strip Control plots**


> N fertilizer applied at rate of 224 kg N ha⁻¹ as urea in 1989, 1993, 1997, 2001, and 2005


Repeated thinning

Minimal thinning

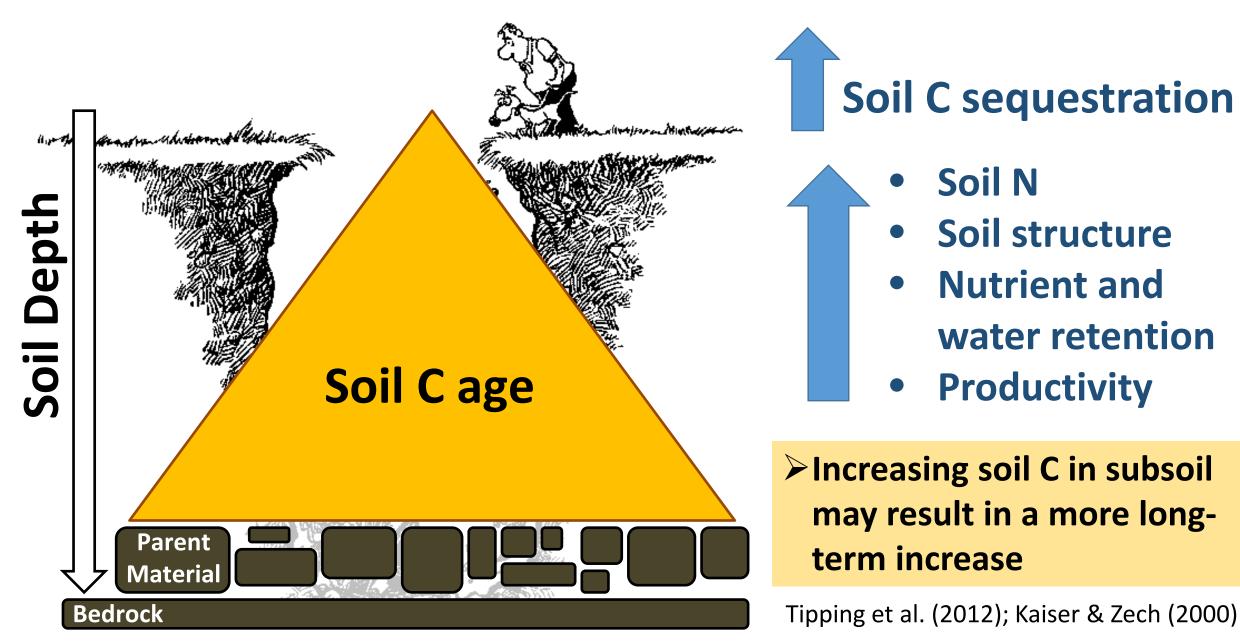

Mean Total Soil Carbon by Plot

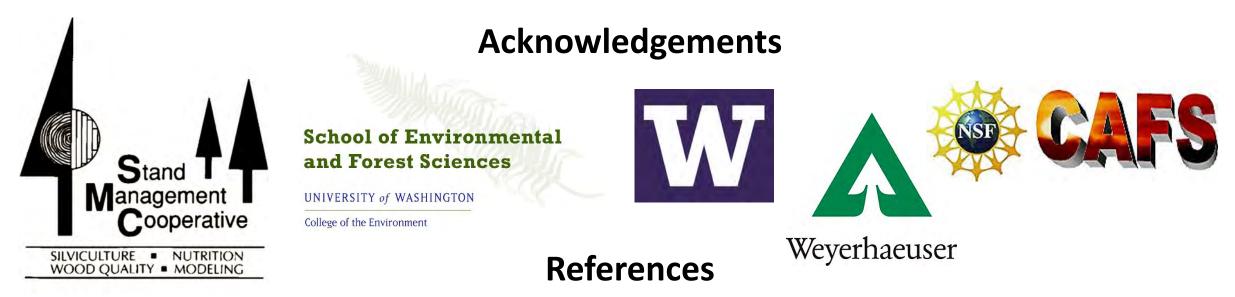
Mean Total Soil Nitrogen by Plot

Soil Bulk Density by Method

Results

Initial statistical analysis:


- NO significant effect of treatment on soil C and N
- NO significant effect of slope or aspect on soil C and N
- Over 50 percent of soil C and N is below a depth of 20 cm
- NO significant effect of method on soil bulk density measurement



Conclusions

- Substantial additions of N as urea over 16 years to fertilized plots did not significantly affect soil C or N
- Thinning regimes (+,- N fertilizer) did not significantly affect soil nutrients
- Subsoil (below 20 cm) contains substantial and biologically available C and N stocks
- Clod, corer, and volumetric methods for measuring soil bulk density are statistically equivalent

Directions for Future Research

- Kaiser, K. and W. Zech. 2000. Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sci. 163:531-535.
- Kalbitz, K., S. Solinger, J.-H. Park, B. Michalzik and E. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165(4):277-304.

Lehmann, J. and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528:60-68.

Tipping, E., P.M. Chamberlain, M. Fröberg, P.J. Hanson and P.M. Jardine. 2012. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry 108:91-107.

Photos/Art

Slides 1,21: http://www.avaya.com/blogs/assets_c/2013/04/digging_deeper_2-thumb-768x459-864.jpg

Slide 6: https://areyouhavingabubble.wordpress.com/tag/sonoran-desert/.
https://upload.wikimedia.org/wikipedia/commons/4/4d/Shola_tadiandamol.jpg.
https://www.tripadvisor.com/Attraction_Review-g143048-d527222-Reviews-Alluvial_Fan-Rocky_Mountain_National_Park_Colorado.html.
https://www.tripadvisor.com/Attraction_Review-g143048-d527222-Reviews-Alluvial_Fan-Rocky_Mountain_National_Park_Colorado.html.
https://www.tripadvisor.com/Attraction_Review-g143048-d527222-Reviews-Alluvial_Fan-Rocky_Mountain_National_Park_Colorado.html.
<a href="https://www.tripadvisor.com/Attraction_Https://www.tripadvisor.com/Attraction_Https://www.tripadvisor.com/Attraction_Review-g143048-d527222-Reviews-Alluvial_Fan-Rocky_Mountain_National_Park_Colorado.html.

Slide 18: http://john-barton.com/wp-content/uploads/2013/11/Digging-this-hole.jpeg

Biomass Models D. Maguire / D. Mainwaring

				HARVEST DATE			
IID	NAME	LANDOWNER	SPECIES	2012 est	2015 est	2016 est	FLEX?
701	Mason Lake	Green Diamond Resource Company	DF	2023			
702	Adam River	BCMF/Mac. Bloedel LTD.	WH	2042		2042	
703	Longbell Road	Washington State DNR	DF	2037		checking	not likely
704	Ostrander Road	Longview Fibre Company	DF	2015		harvested	
705	East Twin Creek	? Via Hancock	DF	2025			
706	B & U Plantation	Weyerhaeuser Company	DF	2025			
707	Rupert Main	BCMF/Fletcher Challenge	WH	2060		2060	
708	Copper Creek	Port Blakely Tree Farms	DF	2037			
709	Mill Cr. Mainline	Weyerhaeuser Company	DF	2026			
710	Trail Creek	Roseburg Lumber	DF	2021		2024	not prior
711	Kitten Knob	Washington State DNR	DF	2040		checking	not likely
712	Prather Creek	Willamette Industries	DF	2034			
713	Sauk Mountain	Arbor Pacific / Grandy Lake	DF	2024	2024		
714	Mahatta River	BCMF/Fletcher Challenge	WH	2055		2055	
715	Davie River	BCMF/Mac. Bloedel LTD.	WH	2032		2032	
716	Quilla Creek	BCMF/CP Forest Products	DF	2036		2036	
717	Grant Creek # 1	Willamette Industries	DF	2032			
718	Roaring River 100-REV	Willamette Industries	DF	2030			
719	A-1510 Road	Washington State DNR	WH	2037	2025	checking	not likely
720	Horton	Bureau of Land Management	DF	2026	2026		
722	Silver Creek Mainline	Longview Fibre Company	DF	2023	2023	harvested	
723	Formader Ridge	USDA Forest Service (NFS)	DF	2048			
724	Vedder Mountain	B.C. Ministry of Forests	DF	2035	2027	2024	
725	Sandy Shore	Pope Resources	DF	2026			
726	Toledo	Plum Creek Timber	DF	2030	2030		
727	American Mill	Rayonier Timberlands	WH	2023			
728	LaPush	Rayonier Timberlands	WH	2020			
729	Gnat Creek	Oregon Dept. of Forestry	DF	2026	2026		
730	Big River	Cavenham Forest Industries	WH	2016	2016	harvested	
731	Dingle 4	USDA Forest Service (NFS)	DF	2050			
732	100-Lens East	BCMF/CP Forest Products	DF	2024		2024	
733	Stowe Creek	BCMF/Mac. Bloedel LTD.	DF	2045	2035	2045	
734	Upper Canada Creek	Hampton Tree Farms	DF	2030		2030	Yes
735	Rayonier Sort Yard	Publishers Paper	DF	2017		2025	
736	Twin Peaks	Campbell Global via Hancock	DF	2025		checking	
737	Allegany	Oregon Dept. of Forestry	DF	2029	2029		
738	Grave Creek Burn	Campbell Global via Hancock	DF	2035		checking	
739	Silver Panther II	Rayonier Timberlands via Campbell	DF	2023			

Notes:

3 Type I installations harvested.

Based on limited responses from 2015 and 2016 survey, best bet(s) for next retirement is/are 735 and 728.

http://depts.washington.edu/ssafr17/

Plan to attend!

Symposium on Systems Analysis in Forest

Resources

August 27-31, 2017

The Symposium on Systems Analysis in Forest Resources (SSAFR) isoan international gathering that has been held every two or more years since 1975, will be held in August 2017 near Seattle, WA. Past symposia brought together decision scientists from around the world who studied forest systems with the goal of making better management and policy decisions. Common topics included harvest scheduling, spatial reserve design, wildfre management, wildlife management, invasive pest detection and control, forest ecosystem services, supply chain optimization for biofuel and timber and non-timber forest economics. The overarching link across these topics has been the use of operations research and decision theory to inform on-the-ground management as well as forest policy. The 2017 SSAFR is going to be unique in that it will bring together two traditionally disconnected disciplines both working on forest decision support systems: the remote sensing/geospatial informatics community and operations researchers. The former group is concerned with how to best collect and process data on forests and other resources, whereas the latter tries to optimize resource management given whatever data is available. Despite the obvious feedback between the two groups, so far they have generally operated separately from each other. In this symposium, we seek to study such questions as how to streamline data collection protocols of competing forest management objectives.

SSAFR 2017

August 27-30, 2017 Clearwater Resort Suquamish, Washington (near Seattle)

IMPORTANT DATES

1 Oct 2016 - Call for Abstracts 15 Nov 2017 - Registration opens 1 Jan 2017 - Submission deadline 1 Feb 2017 - Decision notifcation 15 May 2017 - Early bird fee deadline 15 Jul 2017 - Hotel reservation deadline 27 Aug 2017 - SSAFR 2017 opens

Modeling Competition Effects on Tree Growth and Stand Development: Assembly and Exploratory Analysis of a Spatially Explicit Dataset Jeff Comnick

Modeling Competition Effects on Tree Growth and Stand Development: Assembly and Exploratory Analysis of a Spatially Explicit Dataset

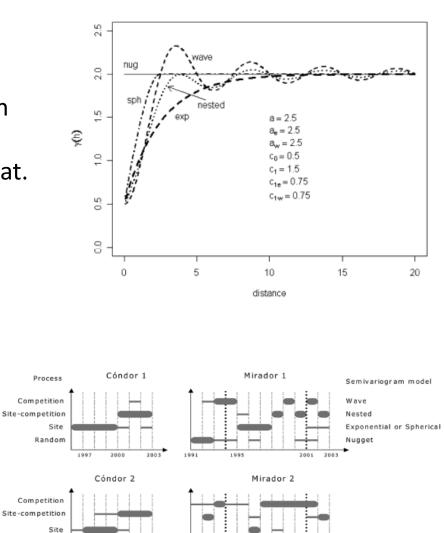
> Eric Turnblom Jeff Comnick

NSF Fundamental Research Program Project Justification

Components of tree growth	Represented mathematically by	
Present size and vigor from past growth environment and genetics	Initial size/age in the growth model	
Micro-environmental and genetic influences	Ratio of subject tree attribute to mean or max attribute in the stand	
General competition environment	Stand density (e.g. basal area per acre)	
Average growth potential modified by neighbors	Competition index of hierarchical position in the stand or distance to/number of neighbors	

- Effects are confounded and highly interactive over long time periods: difficult to separate
- Critiques of existing competition indices:
 - Static, low predictive power, confounded with size and age, strongly influenced by sampling design, not sensitive to spatial patterns, and limited representation of below ground processes

NSF Fundamental Research Program Project Hypotheses


- 1. Does the incorporation of spatially explicit information improve predictions when compared to spatially implicit measures of competition?
- 2. When are competition effects first exhibited in above-ground characteristics of trees in forest stands?
- 3. Can microsite and tree competition processes be separated in plot measurement data?
- 4. Does genetic variability of trees in stands alter competition relationships?
- 5. How do climatic influences affect competition, and hence mortality, relationships?
- 6. Can predictive ability of competition measures be improved through better incorporation of experimental results and theory?

Analysis Context: Spatial

Fajardo, A. and E.J.B. McIntire. 2007. Distinguishing microsite and competition processes in tree growth dynamics: an a priori special modeling approach. Am. Nat. 169:647-661.

Variogram Model	Represents	Justification
Wave	Competition	Dampens with distance
Exponential	Microsite	Positive spatial autocorrelation continuity
Spherical	Microsite	Positive spatial autocorrelation continuity
Nested	Competition and Microsite	
Nugget	Lack of spatial autocorrelcation	

Random

1997

2003

1997

1995

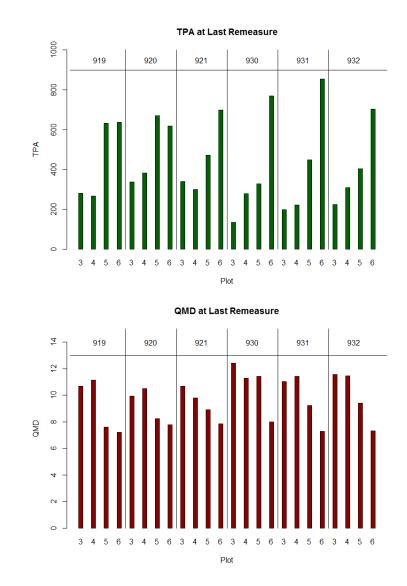
time (years)

2000

W NRSIG

2003

2001


Analysis Context: Weather

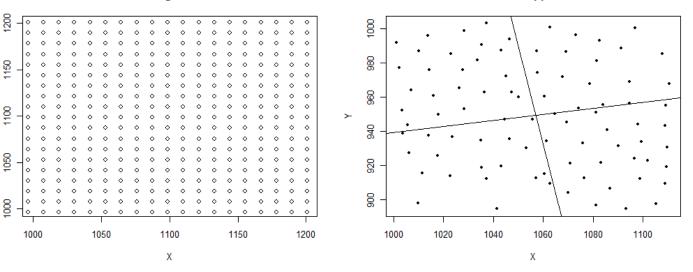
- Hill, Andrew D. 2008 "Improving diameter growth prediction of Douglas-fir in Eastern Washington state, USA, by incorporating temperature and precipitation", PhD Dissertation, College of Forest Resources, University of Washington, Seattle, WA. 213 pp.
- Dr. Terrance Ye, OSU, NTIC most important climate variables to the adaptation of Douglas-fir to PNW environments (from St. Clair et al. (2005)):
 - 1. minimum temperatures in the winter months
 - 2. dates of first spring and last fall frost
 - 3. precipitation and maximum temperature in the summer months
- Dr. Kevin Ford, Forest Service Post-doc Climatic Water Balance Variables with FIA plots

Analysis Data Set

- 4 Plots on each of Installations 819, 820, 821, 830, 831, 832 were stem mapped in summer 2011
- Forks and East Humptulips Installations on west side of Olympic Peninsula
- Plant 300, 440, 680, and 1210
- Pure DF, Pure WH, 50/50 Mix
- 8 11 measurements between 1992/1993 and 2014/2015
- 16,200 observations
- Additional stem maps: raw data for plots on 704, 705, 708, 713, 719, 723, 725, 736, 803, 805, 807
- Validation data set from SE

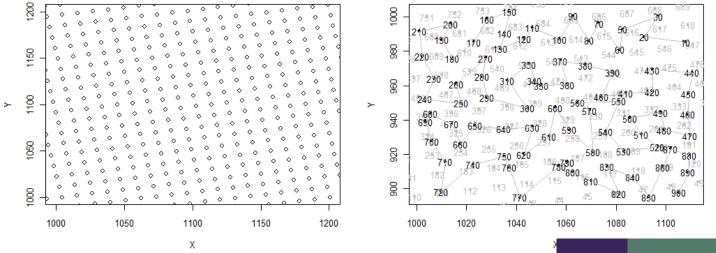
Stem Mapping

- 3 person crews: criterion laser range finder, target, data entry
- Back shot was taken from a plot corner to the first point
- All trees that could be seen from the first point were shot (distance and azimuth)
- Shoot to additional points, shoot all visible trees from each point, repeat...
- All plot corners were shot... usually
- In the office, distance and azimuth were converted to arbitrary XY coordinates



Locating Dead Trees

≻


1. Planting locations

3. Rotated and shifted

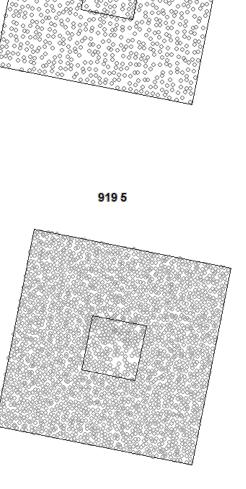
4. Combined

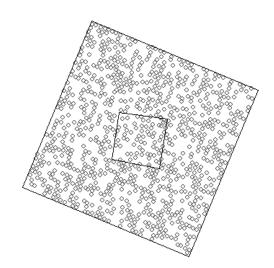
2. Stem mapped trees

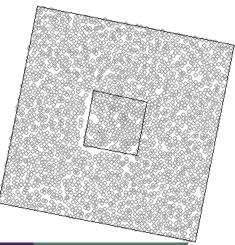
W NRSIG

Locating Dead Trees

687 **¢**9 **φ**8 50₆₀₆ **100** 547 5.05 5@45.0 **7**5 **430 7**2 **P**1 ≻ **680** ²⁰⁰ 5**10 †0** 297 5200₈₇₀ 580 ₁₉₈ 5 790 780 7,40 Ø 184 700 1.83 **730** 1•2 1¢3 R 9 P 0


Х

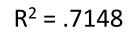

920 3

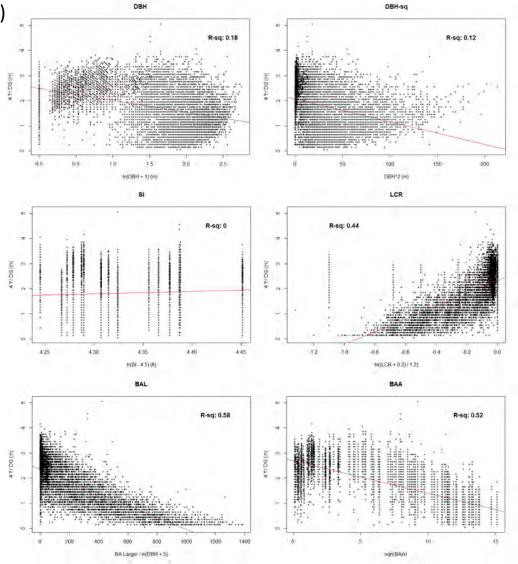

Generating Buffer Trees

- Used spatstat.R package to simulate buffer trees:
 - 1. Create planting grid from spacing
 - 2. Rotate and shift to minimize squared distance from stem mapped trees
 - Periodify in 8 "cardinal" directions
 - 4. Jitter to add random variation
 - 5. Thin to add random gaps
- Simulated locations were then randomly assigned attributes from plot trees

9196

W NRSIG

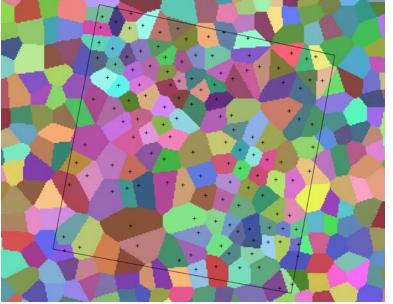

Refitting Organon to Analysis Data Set

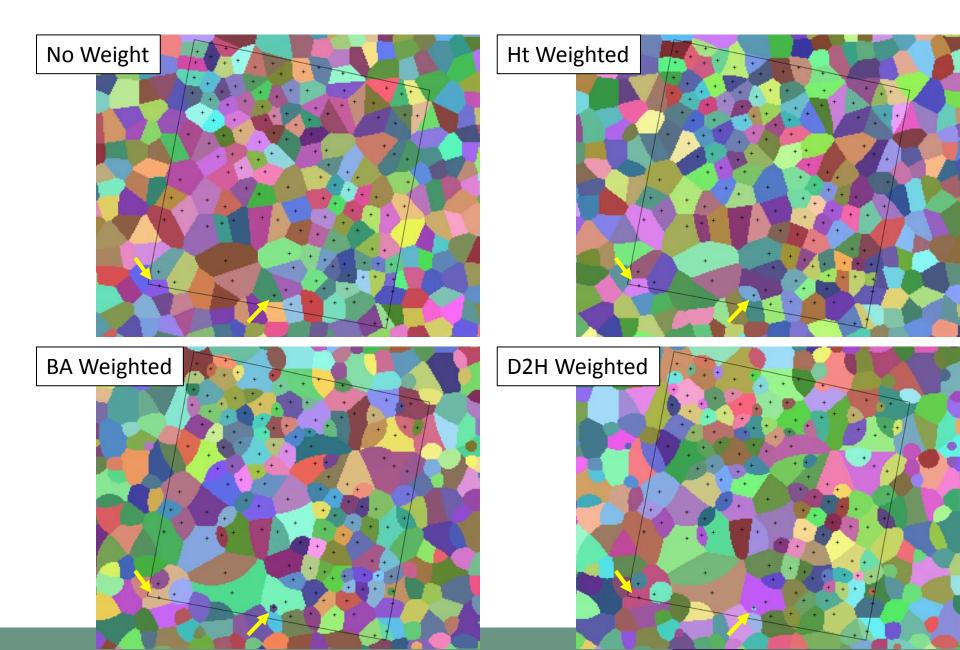

 $DG \sim e^{(DBH + DBH^2 + SI + LCR + BAL + BAA)}$

Where:

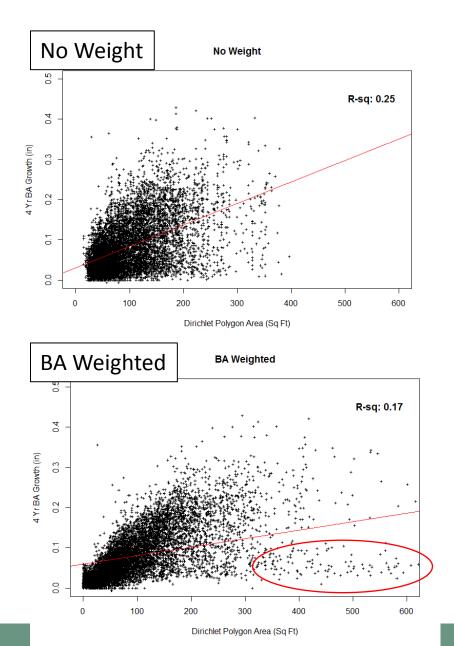
DG = DBH Growth + .15
DBH =
$$ln(DBH + 1)$$

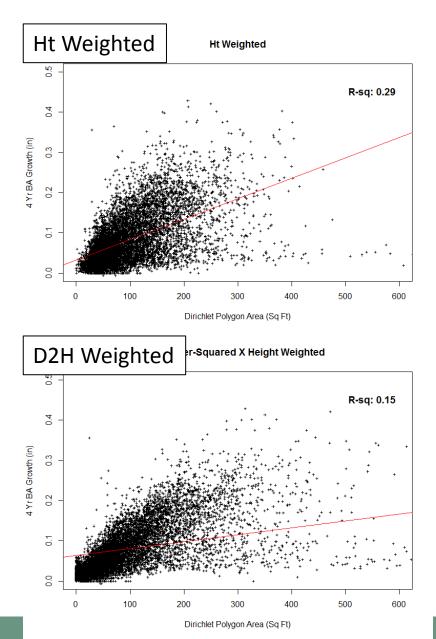
DBH² = DBH²
SI = $ln(SI - 4.5)$
LCR = $ln((LCR + 0.2) / 1.2)$
BAL = BA Larger / $ln(DBH + 5)$
BAA = BAA^{1/2}


	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-3.08E+00	1.89E-01	-16.304	< 2E-16	***
DBH	7.28E-01	1.14E-02	63.751	< 2E-16	***
DBH ²	-1.35E-03	1.70E-04	-7.965	1.77E-15	***
SI	8.53E-01	4.31E-02	19.774	< 2E-16	***
LCR	3.83E-01	2.33E-02	16.44	< 2E-16	***
BAL	-7.32E-04	2.04E-05	-35.841	< 2E-16	***
BAA	-1.35E-01	2.48E-03	-54.474	< 2E-16	***

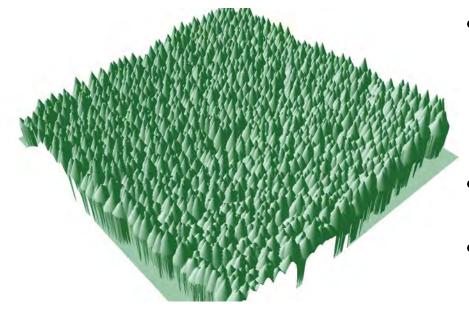

W NRSIG

Local Measures of Competition: Dirichlet Polygons

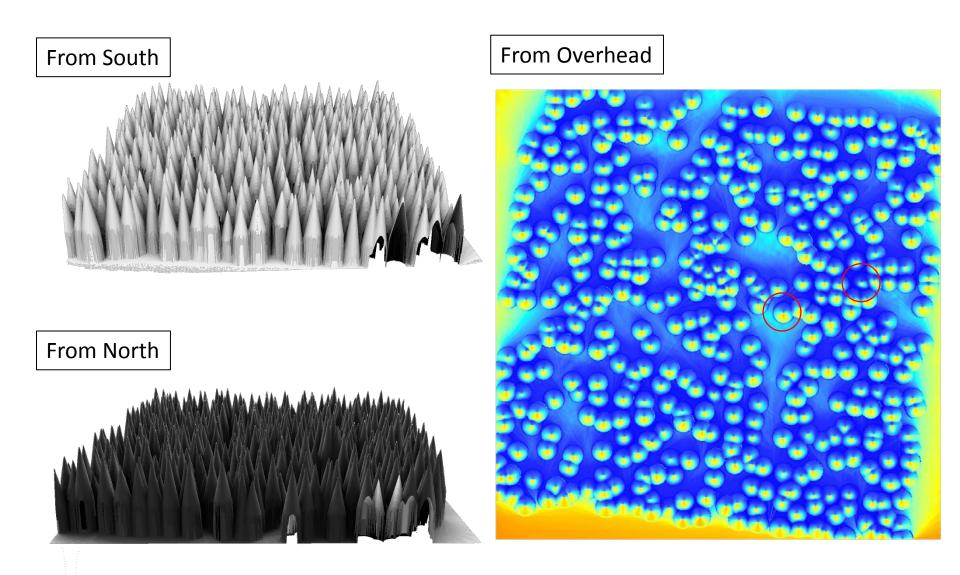



- Thiessen, Voronoi
- Polygon identifies all areas closer to a tree than any other tree
- Utility has been studied many times
- Thought to represent growing space
- Weighted polygons have been studied less frequently (hard to do)
- Approximated using raster-style least cost path analysis
- Implemented in Python NumPy matrix
- Weights determined by: BA, Ht, and D2H
- Impedence (or weight):
 - Distance² / Attribute

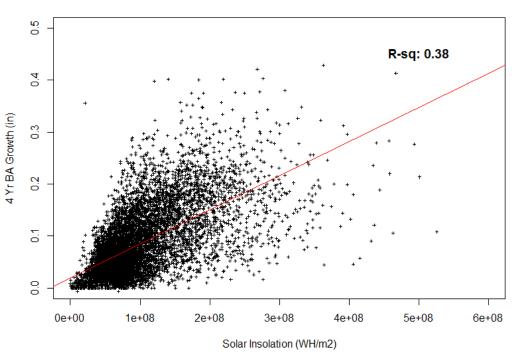
Local Measures of Competition: Dirichlet Polygons (919 6 2015)



Local Measures of Competition: Dirichlet Polygons

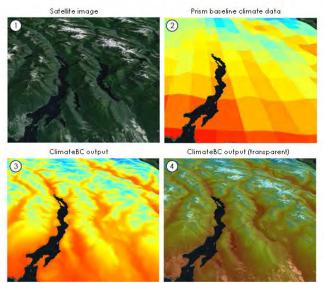

Local Measures of Competition: Solar Insolation

- Model light environment directly:
 - Solar Radiation Tool in ArcGIS Spatial Analyst
 - Crown Surface as Digital Elevation Model
- Calculates solar energy over a time period for every cell in the DEM
- Hemispherical viewshed algorithm, with direct and diffuse radiation, the solar constant, angle of incidence, etc...
- Crowns defined by tree height, LCR, largest crown width
- Crown profile model from Hann, 1999

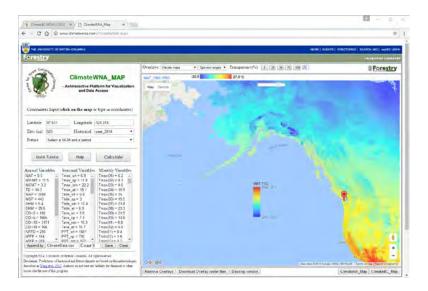

W NRSIG

Local Measures of Competition: Solar Insolation (930 3 2014)

Local Measures of Competition: Solar Insolation


Solar Insolation

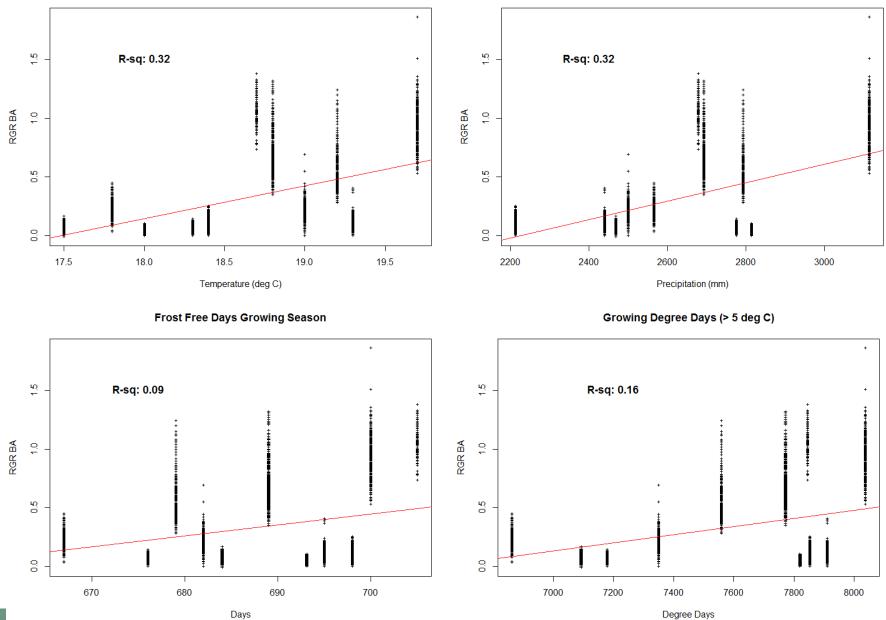
- Requires Ht, LCR, LCW, which are correlated with DBH
- Not as strong a correlation with growth as BAL
- Explicitly describes part of the light environment
- CACTOS CC66 crown area at 66% of a subject tree's height – reflects how density affects the photosynthetic portion of the crown (Krumland and Wensel 1981)


Ŵ

Weather

- ClimateWNA (Western North America) from UBC Centre for Forest Conservation Genetics
- Uses a combination of bilinear interpolation and elevation adjustment to downscale PRISM baseline climate data (1961-1990 normals) into scale-free point data
- Annual, Seasonal, and Monthly Variables:
 - Mean, Min, Max Temp, Precip
 - Degree-days (chilling, growing, heating, cooling)
 - Frost free days
 - First and last freezing day
 - Hargreaves moisture deficit
 - Relative humidity
 - Solar radiation

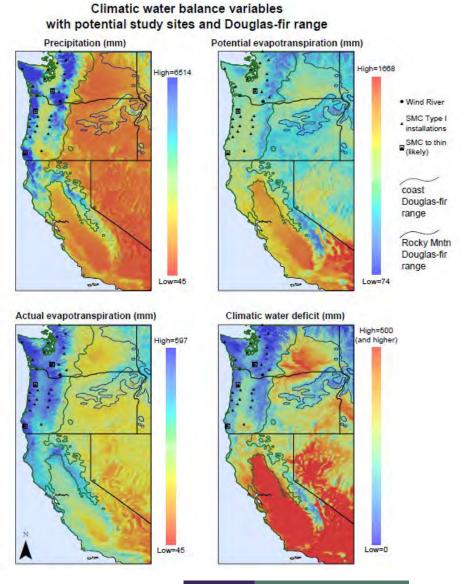
Effect of downscaling on the baseline data



W

Weather

Max Temperature Growing Season


Precipitation Growing Season

Days

Weather

- Climatic Water Balance Variables:
 - Indicators of availability of energy and water for plant growth
 - Indexed to standard vegetation cover
 - PET: Potential evapotranspiration if unlimited water were available
 - Water availability: Water supply from seasonal dynamics of temperature, precipitation, insolation, snowpack, and soil moisture
 - AET: Actual evapotranspiration, min of PET and water availability an indicator of the climatic favorability of a location for growth
 - Climatic Water Deficit: PET AET

W NRSIG

Variables

- LCR
- LCW

Stand Per Acre

- TPA
- QMD
- BA
- RD

<u>Weather</u>

- Temperature
- Precipitation
- Frost Free Days
- Degree Days
- PET
- AET
- Water Deficit

Non-Spatial Measures of Growing Space and

Competition

- BAL
- CC66

Spatial Measures of

Growing Space and

Competition

- Dirichlet No Wt
- Dirichlet BA Wtd
- Dirichlet Ht Wtd
- Dirichlet D2H Wtd
- Solar Insolation
- Solar Insolation GS
- Solar Insolation DS

W NRSIG

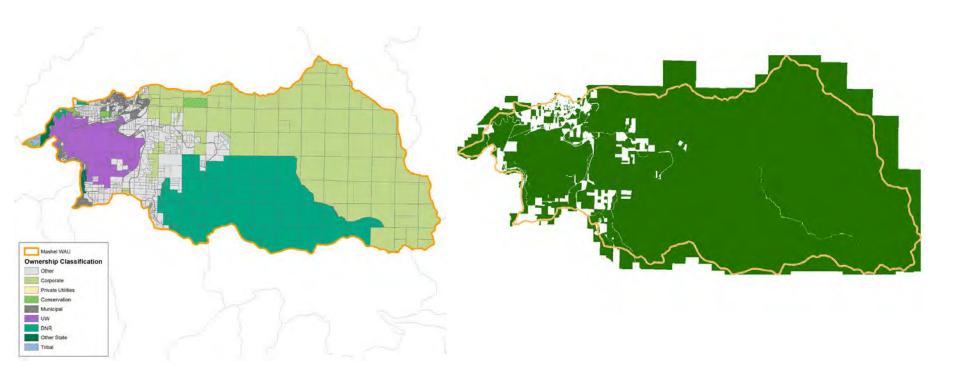
NRSIG – DNR Project Luke Rogers

Precision Forestry Cooperative Synergistic Projects

Luke Rogers, Research Scientist Natural Resources Spatial Informatics Group School of Environmental and Forest Sciences

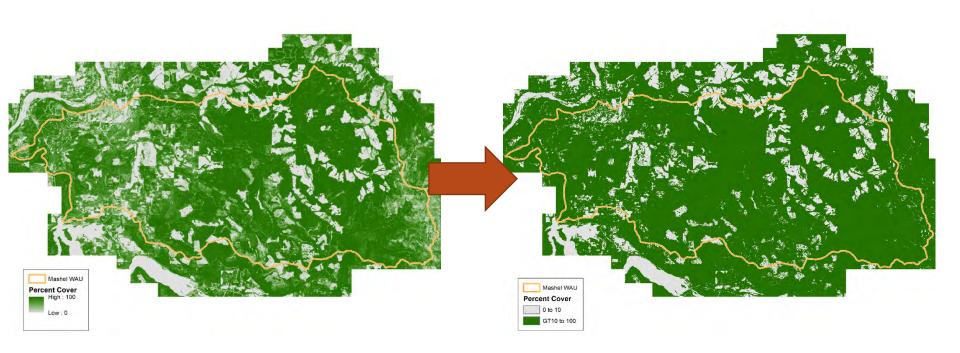
Overview

- Inventory Sampling Design & WETSAG Riparian Monitoring
- CMER Stream Typing Model
- Ecology Wetland Mapping
- Waste 2 Wisdom

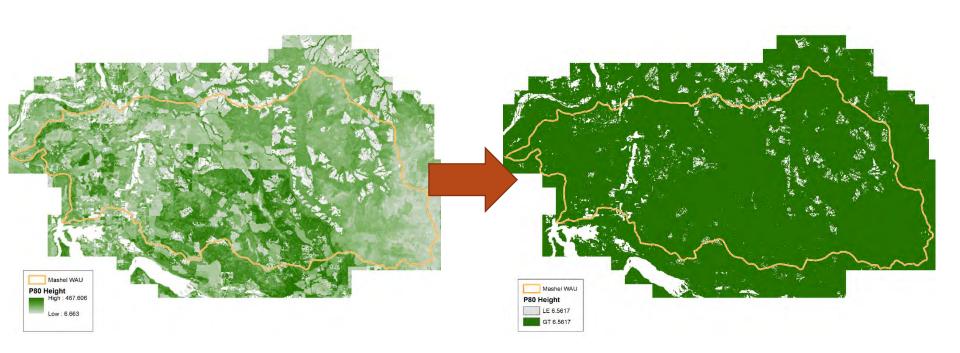


Inventory Sampling Design and RSAG Riparian Monitoring

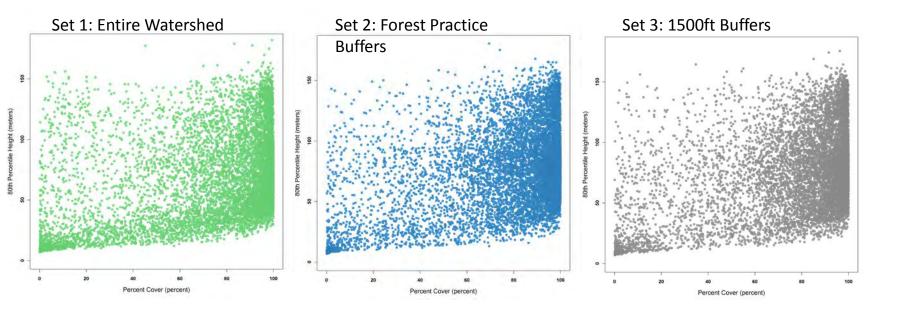
Andrew Cooke



Limiting Plot Locations on Landscape Resource Lands (DOR land use code 80 or above; WAC 458-53-030)



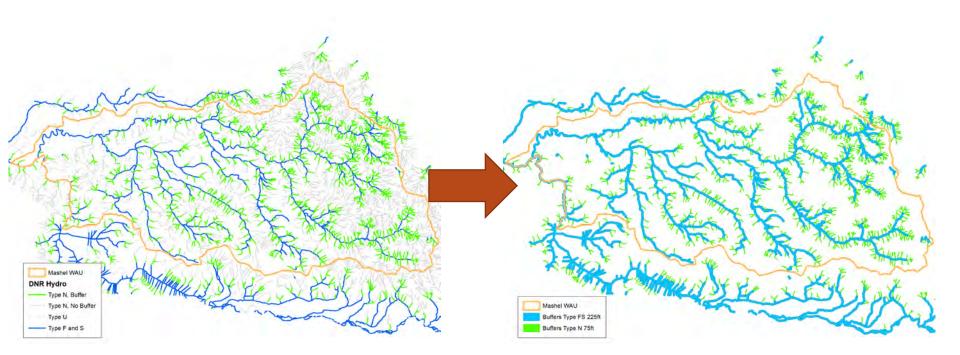
LIDAR Percent Cover (10% or more)



LIDAR P80 Height (2m or higher)

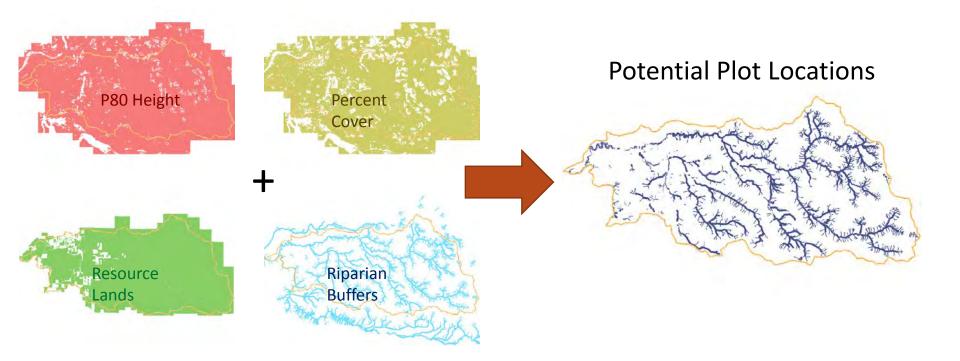
	P80		Cover		
	mean	sd	mean	sd	
SET1	67.1	35.7	74.8	30.7	
SET2	77.3	33.4	79.9	25.6	
SET3	75.0	33.2	79.6	26.5	

Comparison of 80th percentile height and percent cover for the 3 buffer rule sets

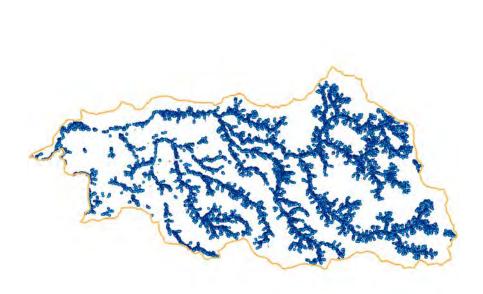

Limiting Plot Locations on Landscape

Sample Point Location Overview

Set 1: Entire Watershed Set 2: Forest Practice Buffers Set 3: 1500 ft. Buffers

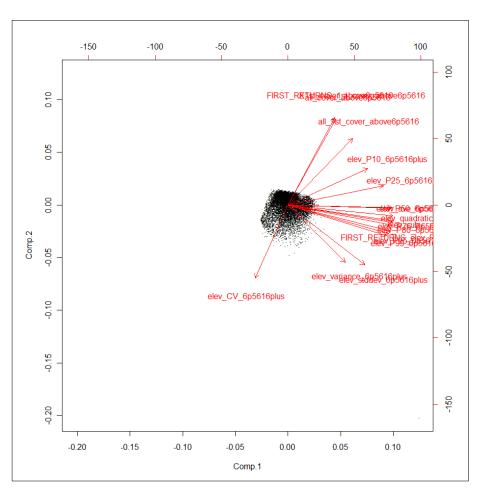


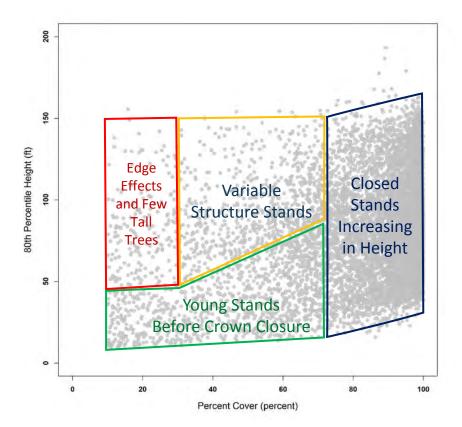
Limiting Plot Locations on Landscape Riparian Buffers (Type F and S; 1500 ft up all type N streams)


Limiting Plot Locations on Landscape Combining

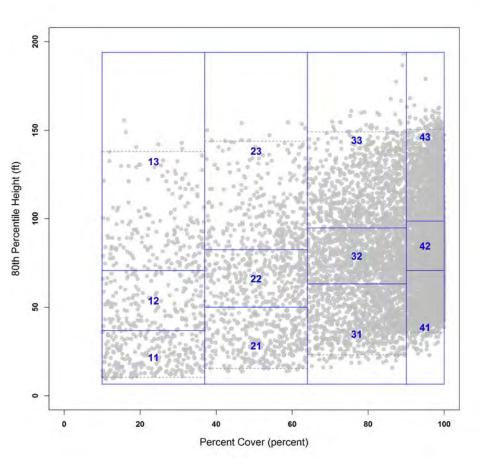
Sample Points for Principal Components Analysis

10k points sampled randomly from potential plot location area

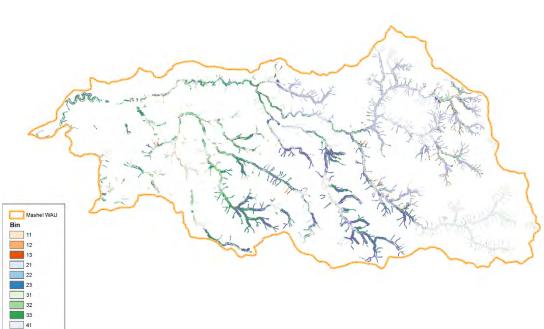


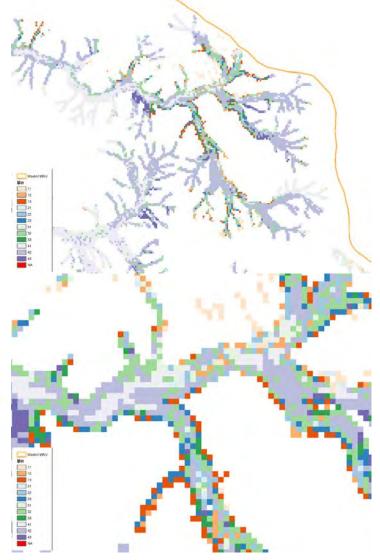

Principal Components Analysis

Importance of components:			
	Comp.1	Comp.2	Comp.3
Standard deviation	3.42	1.99	1.26
Proportion of variance	0.65	0.22	0.09
Cumulative Proportion	0.65	0.87	0.96
	Comp.1	Comp.2	Comp.3
1st_cover_above6p5616	0.13	0.41	0.28
all_1st_cover_above6p5616	0.18	0.32	0.32
all_cover_above6p5616	0.13	0.41	0.24
elev_ave_6p5616plus	0.29	-0.01	-0.14
elev_cubic_mean	0.29	-0.08	-0.05
elev_CV_6p5616plus	-0.09	-0.35	0.44
elev_P10_6p5616plus	0.22	0.17	-0.39
elev_P25_6p5616plus	0.26	0.09	-0.29
elev_P50_6p5616plus	0.28	-0.01	-0.13
elev_P75_6p5616plus	0.29	-0.08	-0.03
elev_P80_6p5616plus	0.29	-0.10	-0.01
elev_P95_6p5616plus	0.28	-0.14	0.06
elev_P99_6p5616plus	0.27	-0.14	0.09
elev_quadratic_mean	0.29	-0.05	-0.08
elev_stddev_6p5616plus	0.21	-0.28	
elev_variance_6p5616plus	0.16	-0.27	0.31
FIRST_RETURNS_1st_cover_above6p5616	0.13	0.41	0.28
FIRST_RETURNS_elev_P90_6p5616plus	0.28	-0.12	0.05

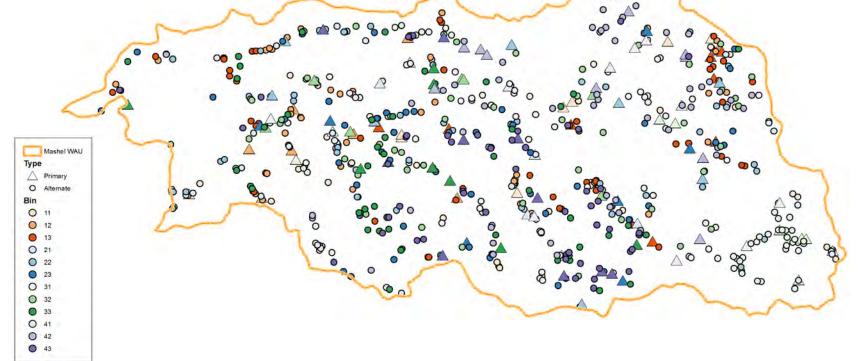


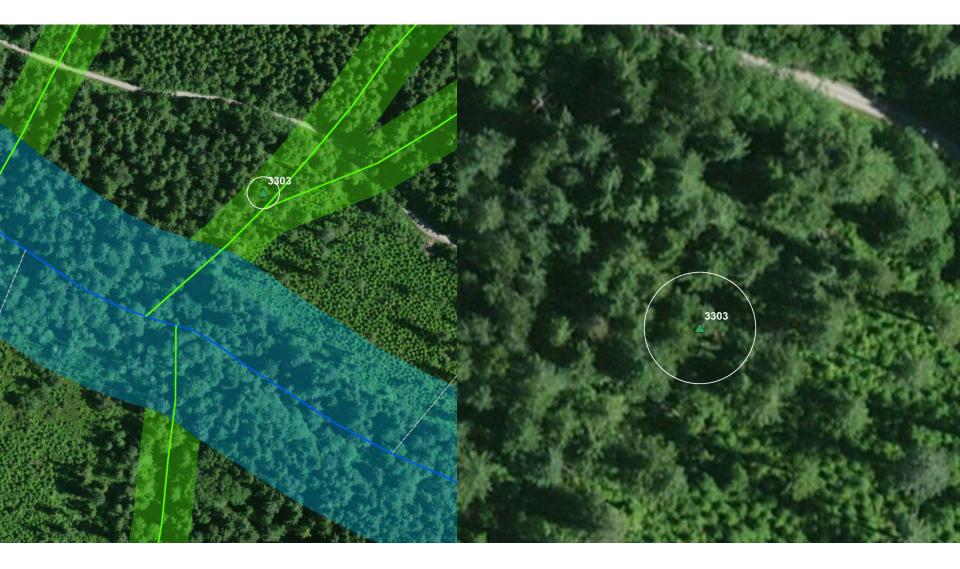
Description of Stand Structures in Sample


Bins



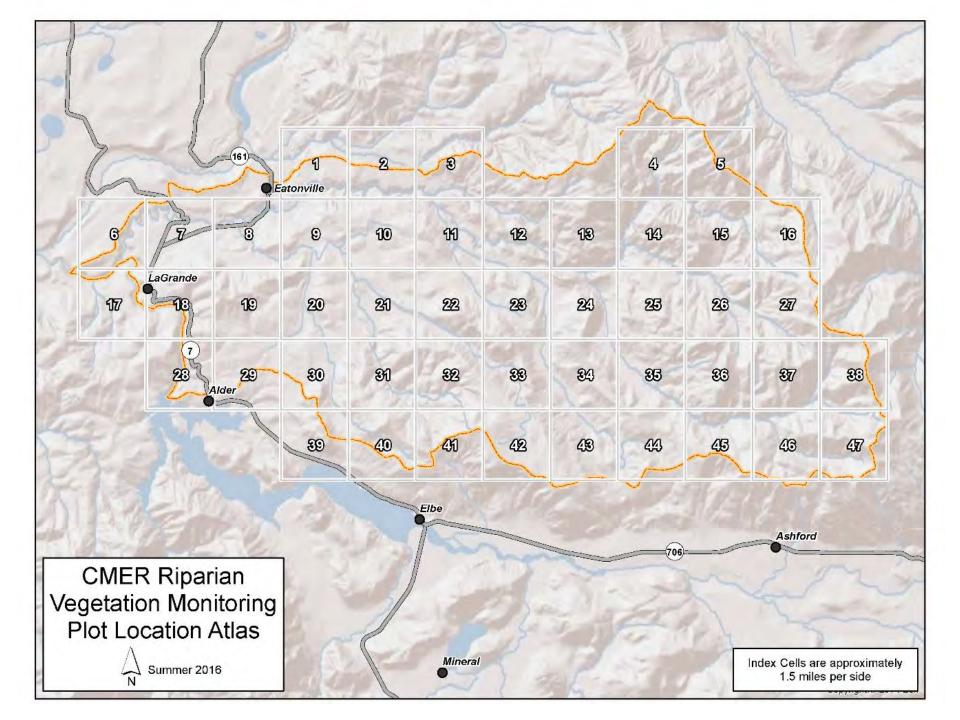
bin	pc_min	pc_max	ht_min	ht_max	percent
11	10	37	6.6	36.9	2%
12	10	37	36.9	70.8	2%
13	10	37	70.8	max	2%
21	37	64	6.6	50.1	3%
22	37	64	50.1	82.5	3%
23	37	64	82.5	max	3%
31	64	90	6.6	63.2	10%
32	64	90	63.2	94.9	10%
33	64	90	94.9	max	9%
41	90	100	6.6	70.9	19%
42	90	100	70.9	98.7	22%
43	90	100	98.7	max	15%

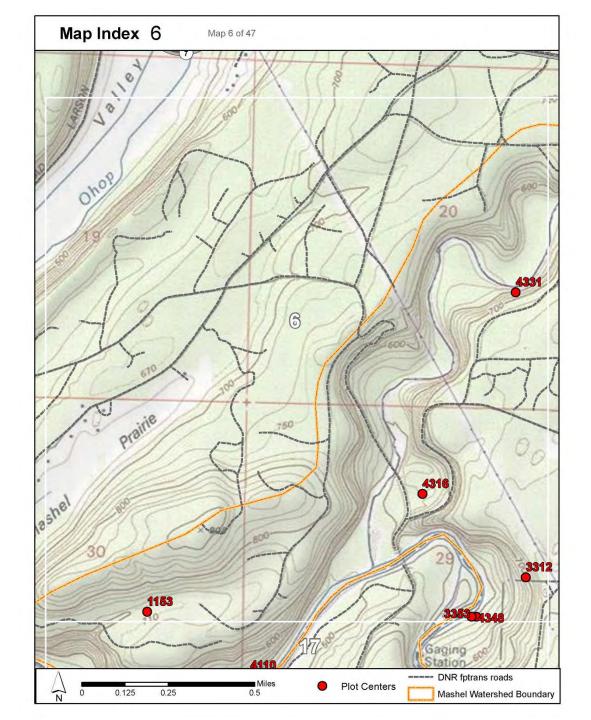

Assign Bins to All Potential Sample Areas

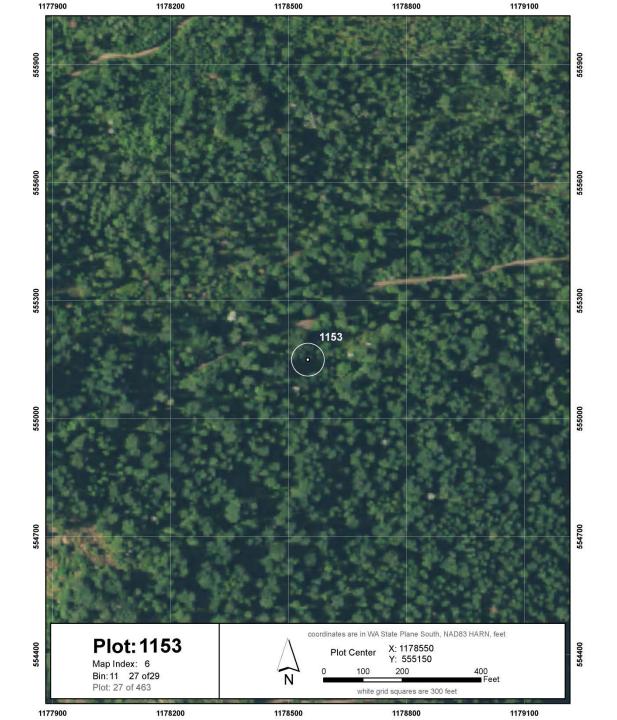


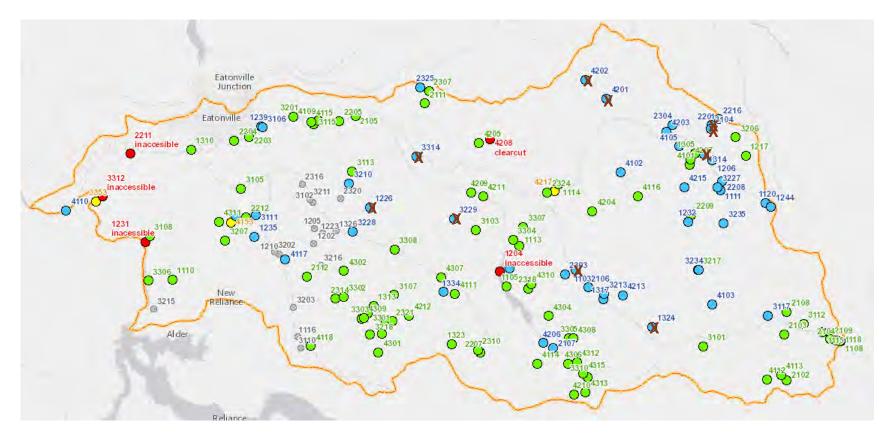
Randomly Sample from Potential Plot Locations to locate field plots

200

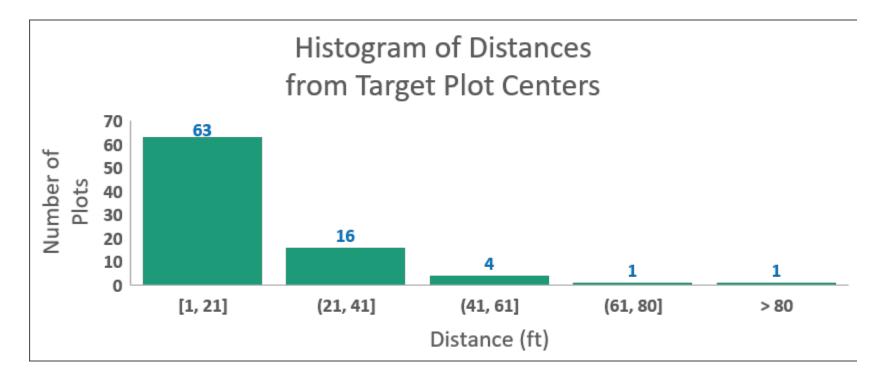








Field work status


 \bigcirc

as of August 26

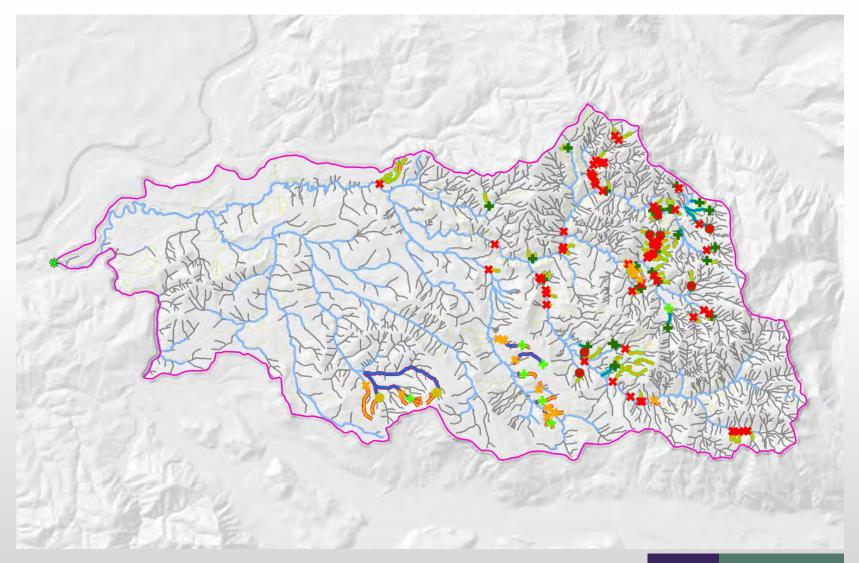
Navigation Accuracy

as of August 26

Reprocessing LIDAR and recalculating bins

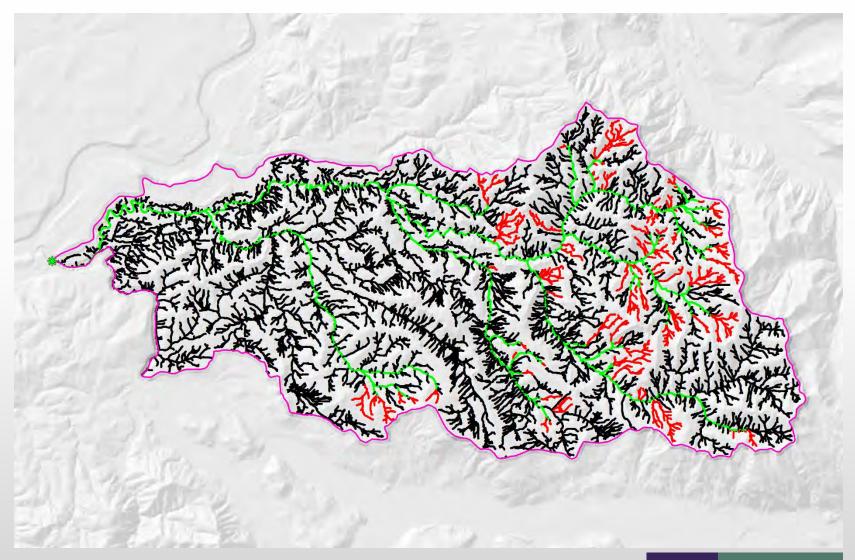
Reprocessing LIDAR and recalculating bins

- True plot centers are not exactly at the intended plot centers
- Reprocess the LIDAR centered on each GPS position
- This will give us slightly different bin distributions



CMER Stream Typing Model

Luke Rogers



Mashel Field Data

Mashel Validation Data

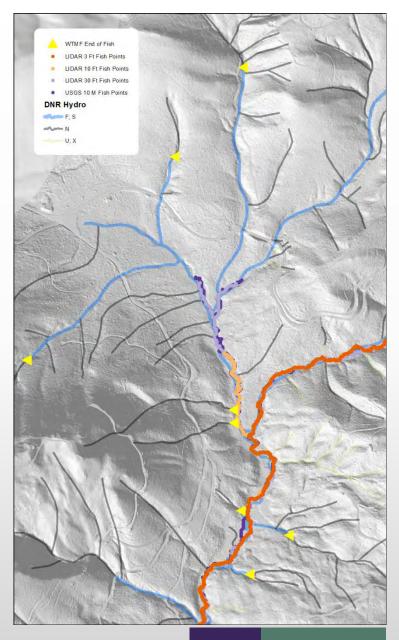
Mashel Results

Logistic Model

Stopping Rule

DEM	Correct C	Over l	Under	DEM	Correct (Over l	Jnder
LIDAR				LIDAR			
3	87.96%	0.85%	11.18%	3	88.80%	1.47%	9.73%
10	86.22%	0.02%	13.76%	10	88.18%	0.10%	11.73%
30	81.95%	0.04%	18.01%	30	83.56%	0.06%	16.38%
USGS				USGS			
30	85.25%	0.11%	14.64%	30	87.67%	0.12%	12.21%

Stream Type	Field Verification Method	# WTMF
Fish	Biological	36
Non-Fish	Biological	66
Fish	Physical	9
Non-Fish	Physical	20



\bigcirc

Mashel Results

Error Distances

DEM	Error Distance	Absolute Error Distance	Average Error Distance
LIDAR			
3	60,938	64,944	984
10	82,944	84,044	1,184
30	86,580) 87,274	. 1,015
USGS			
30	81,508	8 83,112	966

Ecology Wetland Mapping

Luke Rogers, Andrew Cooke, Jeff Comnick

Factsheet # 23

Using LiDAR and Object Based Image Analysis (OBIA) to map wetlands in Mt. Rainier National Park

Remote

S ensing 8

G eospatia

A nalysis

L aboratory

Figure 1. 3-D image of wetlands using LiDAR data

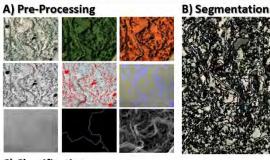
Study Area

Summary: The combination of LiDAR and Object based image analysis (OBIA) provides a cost-effective approach to map wetlands across large spatial extents. LiDAR removes problems associated with tree canopy and topography while OBIA provides the ability to automate the wetland classification process.

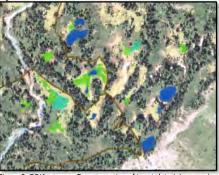
LIDAR: LiDAR is an active remote sensor that penetrates the canopy and therefore removes any shadowing or blocking effects. We used four LiDAR derived data products; canopy surface model, ground model, LiDAR intensity image, and a slope index. Figure 1 is an example of a LiDAR point cloud colored using an aerial image.

Object based image analysis: OBIA mimics the way that humans recognize patterns. OBIA detects patterns within multiple data input layers, segments these patterns at a user defined scale and classifies these segments through the development of a ruleset. We used Trimble eCognition software for our analysis.

10. 20 Kilometai


Figure 2. The study area is located in Paradise Meadows in Mt. Rainier National Park

Methods


One of the strengths of OBIA is that it allows the analyst to use multiple data input layers. (Figure 3a), However, we ran the segmentation only on the LiDAR data layers (Figure 3b).We chose from hundreds of classification features (i.e. color, shape, size) to develop our classification ruleset (Figure 3c). We mapped significantly more wetlands than had been previously detected in other wetland inventories (Figure 3d).

Input Data Layers:

 2006 aerial imagery 	 Surface model
2009 aerial imagery	Ground model
 Lidar intensity 	 Roads layer
• Lidar intensity below 2	Trails layer
meters	 Slope index
	Siope much

C) Classification

D) Results Accuracy Assessment:

21/25 = 84% using amphibian dataset from Mt. Rainier National Park

61/64 = 95.31% using USFWS National Wetland Inventory

Figure 3. OBIA process. Pre-processing of input data (a), example of segmentation of data (b), example of classification of wetlands (c), & results using available datasets from Mt. Rainier and the National Wetland Inventory

THE ISSUE: A repeatable cost-effective approach to map wetlands over large spatial extents is needed. However, complex topography and tree canopy obscures wetlands and causes shadows, which makes wetland classification using traditional remote sensing methods infeasible. THE KEY QUESTIONS: Can the use of LiDAR remove problems associated with trees and topography in the classification of wetlands?

Citation: Halabisky, M., and L.M. Moskal., 2012. Using LiDAR and object based image analysis to map wetlands in Mt. Rainier National Park. Factsheet #23. Remote Sensing and Geospatial Application Laboratory, University of Washington, Seattle, WA. Digital version of the fact sheet can be downloaded at: http://dept.washington.edu/rsgal/

Waste 2 Wisdom

Jeff Comnick

LEARN MORE

MEET THE TEAM | JOIN THE CONVERSATION | BLOG | CONTACT US | JOIN CONTACT US | JOIN THE CONVERSATION | BLOG | CONTACT US | JOIN CONTACT US

Home About Outcomes Benefits

IT'S TIME: OUR FORESTS NEED SOLUTIONS

Our \$5.88 million project seeks to convert wasted forest residues into bioenergy and bio-

products

Thank You

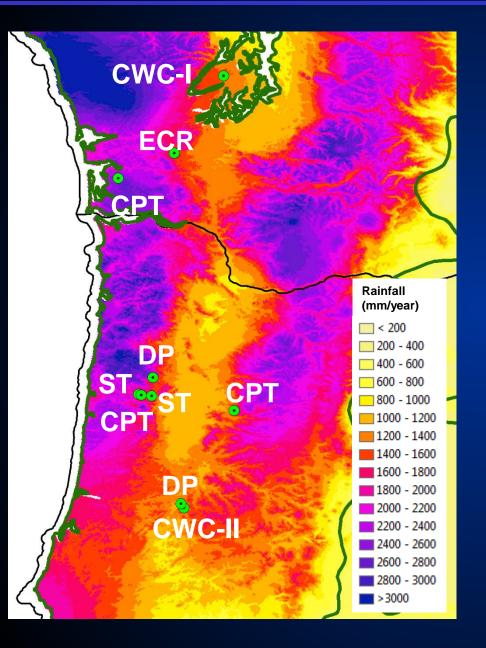
Luke Rogers Research Scientist

lwrogers@uw.edu

Precision Forestry Cooperative School of Environmental and Forest Sciences College of the Environment, University of Washington 355 Bloedel Hall Box 352100 Seattle, WA 98195-2100 (206) 543-7418

Vegetation Management Research Cooperative

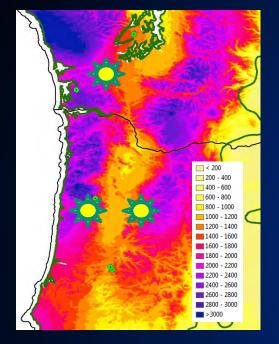
Carlos Gonzalez-Benecke



 Conduct applied reforestation research with an emphasis on operational vegetation management.

Promote reforestation success such that survival, wood-crop biomass and growth are maximized while protecting public resources.

VMRC – Ongoing Studies

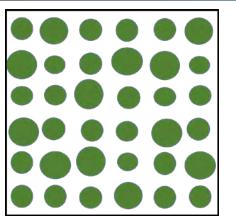


- 13 Members
- 10 ongoing studies
- **69** acres
- 448 plots
- 17,832 measurement trees
- Planted year: 2000 2012

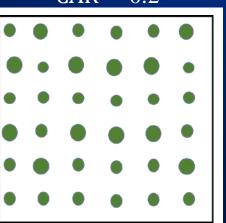
Full Members of the Vegetation Management Research Cooperative Bureau of Land Management Campbell Global, LLC Cascade Timber Consulting Green Diamond Resource Company Hancock Forest Management, Inc. Lone Rock Timber Co. Olympic Resource Management Oregon Department of Forestry Oregon State University Plum Creek Timber Co. Inc. Rayonier Inc. Roseburg Resources Co. Starker Forests, Inc. Washington Department of Natural Resources

Supporting Members Dow Agro Sciences, LLC

Integrated Analysis: VM Effects on Stand Canopy Dynamics



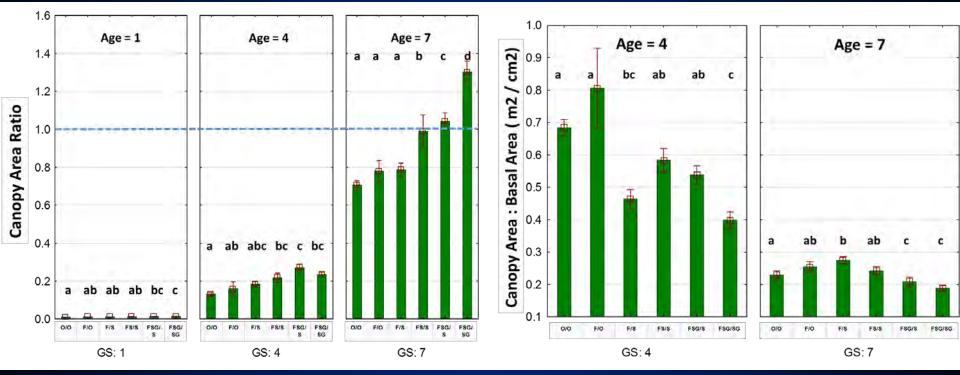
Studies measured:

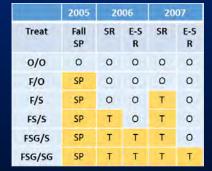

- CPT01 (Starker Forests)
- CPT02 (Cascade Timber)
- ECR01 (WDNR) \bullet

Age of measurement: 1, 2, 3, 4, 5, 7 and 8

CAR = 0.6

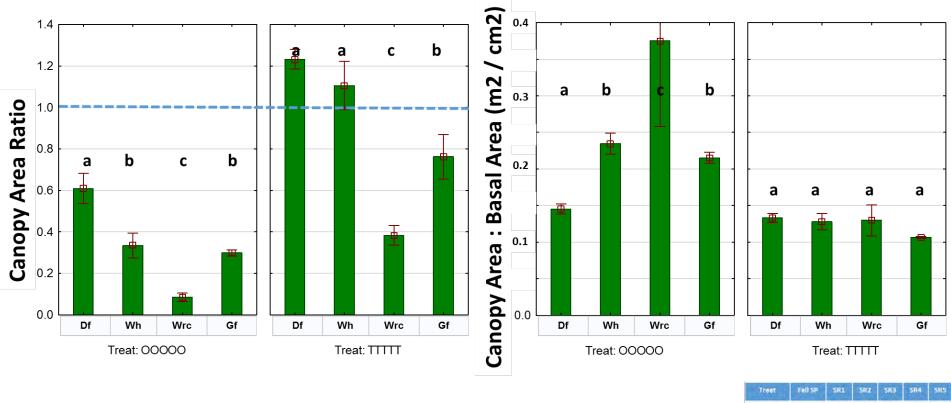
CAR = 0.2




 $CAR = \frac{\sum CAi}{\text{plot area}}$

Integrated Analysis: VM Effects on Stand Canopy Dynamics

ECR01 (WDNR)



Integrated Analysis: VM Effects on Stand Canopy Dynamics

CPT01 (Starker Forests)

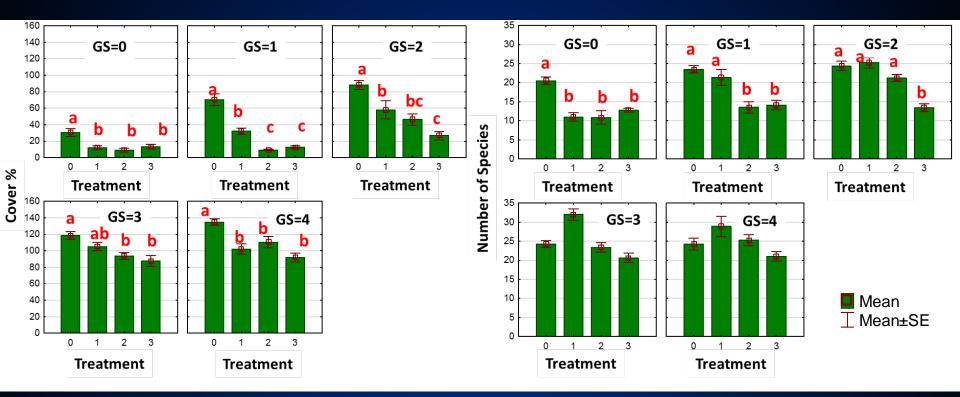
Age = 8

Ireat	Fall SP	SRL	SRZ	SR3	584	SRS
00000	SP	0	0	0	0	0
тоооо	SP	т	0	0	0	0
ттооо	SP	т	Т	0	0	0
тттоо	SP	т	T	T	0	0
ппо	SP	Ť	T	т	т	0
ππ	SP	т	т	т	т	т
опп	SP	0	т	т	т	т
00111	SP	0	0	т	т	т

Integrated Analysis: VM Effects on Vegetation Community Dynamics

CW101 (ORM)

ECR01 (WDNR)


CPT01 (Starker) DPS01 (Starker) CPT02 (Cascade Timber) DPS02 (Hancock F. M.) CW201 (Lone Rock Timber Co.)

On each study selected treatments with:

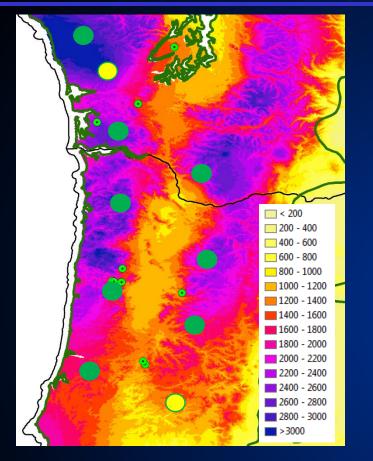
- Control : No Vegetation Management
- FSP : Only Fall Site Preparation
- **FSP** + **SR1** : Fall Site Preparation + Spring Release Year 1
- **FSP** + **SR1** + **SR2**: Fall Site Preparation + Spring Release Year 1 + Spring Release Year 2

Integrated Analysis: VM Effects on Vegetation Community Dynamics

Total Vegetation

Treatments
0 : Control
1 : FSP
2 : FSP + SR1
3 : FSP + SR1 + SR2

Integrated Analysis: VM Effects on Vegetation Community Dynamics


Growing Season when species Cover% is recovered (equals to control)

Growing Season when species richness is recovered (equals to control)

Habit	Cover % of Control at GS=4 yrs.	FSP	FSP + SR1	FSP + SR1 + SR2	Habit	Number of spp of Control at GS=4 yrs.	FSP	FSP + SR1	FSP + SR1 + SR2
Forb	22	1	2	3	Forb	15	1	2	3
Fern	23	>4	>4	>4	Fern	1-2	-	-	-
Graminoid	20	1	3	4	Graminoid	2	1	2	4
Shrub	22	>4	>4	>4	Shrub	3	-	-	-
Tree	7	1	2	2	Tree	2	-	-	-
V/S	38	>4	>4	>4	V/S	2	3	3	3
Total	132	>4	>4	>4	Total	25	1	2	3

VMRC - New Project

Develop a Decision Support System

"Assessing Interactions between Soil, Climate and Vegetation Management Treatments for PNW Conifer Plantations"

Treatment Type	Fall site Preparation	Spring Release Growing Season 1	Spring Release Growing Season 2
1 (000)	0	0	0
2 (010)	0	1	0
3 (001)	0	0	1
4 (011)	0	1	1
5 (100)	1	0	0
6 (101)	1	0	1
7 (110)	1	1	0
8 (111)	1	1	1

Tier I : 2 sites for Douglas-fir (wet, dry), 1 site for Western Hemlock; 4 replicates; tree and vegetation dynamics; tree and vegetation biomass sampling; weather; soil moisture; nutrient use; ecophysiology (stomatal conductance, xylem water potential, transpiration, soil respiration).

Tier II : +8 sites (from WA to South OR); 1 replicate ; tree and vegetation dynamics; weather.Sites selected:Tier I: Hancock Forest Management (Western Hemlock)Tier II: OSU College Forest (Douglas-fir)Tier II: Cascade Timber Resources (Douglas-fir)

New Project

Factorial Combinations of Vegetation Control

Number of Treatments: 8 Replicates per site: 4 Total Plots: 32 Measurement Plot: 8 x 8 trees (64 trees = 0.15 ac) Buffer: 2 trees Total Plot = 12 x 12 trees (144 trees = 0.29 ac)

+ Extra plot with 000 and 111 for biomass sampling

Seasonal Sampling

Table 3. Monthly activities during the first 3 years on selected plots for Tier I study sites:											
Activity	March	April	May	June	July	Aug	Sept	Oct	Nov		
Seedlings diameter and											
height*											
Vegetation biomass and											
cover*											
Seedling biomass and SNA**											
Nutrient concentration**											
Soil moisture*											
*: Only on two selected plots (000 and 111)											
**: Only on two biomass plots											

Example of plot layout

-		_		_							
۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲
۲	۲			۲	۲	۲	٠	۲	۲	۲	۲
								•			
	i	_						-			
۰	•	۲	۲	۲	۲	۲	۲	۲	۲	•	۲
۲	•	۲		۲	٠	۲		۲			٠
						•					
								-			
۲	•	٠	۲	۲	٠	۲	۲	۲	•	•	۲
۲		۲	۲	۲	۲	۲		۲		۲	۲
۲	•	٠	•	•							
	•	•									
	_		÷	÷	- <u>-</u>	- -	- <u>-</u> -		-		-
•	•					•					
۲	۲	۲	۲		۲	۲	۲	•	۲		•

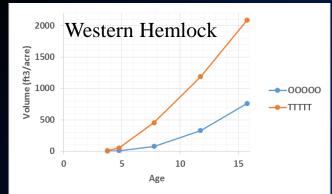
Example of block layout

Biomass	000	011	100	001
Biomass	010	110	101	111

New Project

Table 5. Proposed site deployment strategy over the next 4 years.											
	2017	2018	2019	2020	Total						
Tier I DF		1	1		2						
Tier I WH	1				1						
Tier II DF	2	1	2	3	8						
Tier II WH		1	1	1	3						

The data from all of the experimental sites will be pooled into a large database and used for region wide modelling analysis.


Outcomes:

Develop a process based model for the whole forest system (crop trees plus competing vegetation) to predict productivity and survival under different management and site conditions.

- Quantify and predict the effect of environmental changes on the ecophysiology and productivity of recently established DF and WH plantations interacting with competitive vegetation.
- Characterize dynamics of tree and competing vegetation demands for nutrients and water.

Current Projects

Beyond DBH and Height

"Assessments of Carbon Stock and Net Primary Productivity Responses of Four Coniferous Species on Long-term Vegetation Management Studies in the PNW"

On a 16 year-old VMRC study that includes 4 crop species (DF, WH, WRC and GF), we are measuring litterfall, tree biomass, understory biomass, forest floor and soil organic matter in two contrasting VM treatments.

Future Projects

1. G x E Interactions

Site-Specific Interactions of Genetics, Site and Regeneration Treatments (Vegetation Control, Planting Density, Fertilization, Mech. Site Prep.)

2. Sustainability of regeneration treatments

- Long-term effects on water and nutrient dynamics
- Long-term effects on biodiversity

3. Mid-rotation Vegetation Management

- Associated to Thinning
- Pre-Harvest

4. Stock-type x VM Interactions: Include other species (WH / WRC)

5. Ecophysiological Modeling:

• **3-PG** for young stands including the effects of VM tretments on trees and competing vegetation dynamics.

6. Operational/Specific studies:

Test new herbicides (Cleantraxx)